Semisupervised Dimensionality Reduction With Pairwise Constraints for Hyperspectral Image Classification

被引:70
作者
Chen, Shiguo [1 ]
Zhang, Daoqiang [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Comp Sci & Engn, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
Dimensionality reduction; hyperspectral image classification; pairwise constraints; sparse representation; FEATURE-EXTRACTION;
D O I
10.1109/LGRS.2010.2076407
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Dimensionality reduction is an important task in the analysis of hyperspectral image data. While traditional dimensionality reduction methods use class labels as prior information, this letter presents a general semisupervised dimensionality reduction framework for hyperspectral image classification based on new prior information, i.e., pairwise constraints which specify whether a pair of examples belongs to the same class or not. The proposed semisupervised dimensionality reduction framework contains two terms: 1) a discrimination term that assesses the separability between classes; and 2) a regularization term that characterizes some property of the original data set. Furthermore, a novel semisupervised dimensionality reduction method is derived from the framework based on sparse representation. Experimental results on two hyperspectral image data sets show that the proposed algorithms are remarkably effective in comparison to traditional dimensionality reduction methods.
引用
收藏
页码:369 / 373
页数:5
相关论文
共 17 条
[1]  
[Anonymous], 2000, Pattern Classification
[2]   Classification of Hyperspectral Images With Regularized Linear Discriminant Analysis [J].
Bandos, Tatyana V. ;
Bruzzone, Lorenzo ;
Camps-Valls, Gustavo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (03) :862-873
[3]   Dimension Reduction of Optical Remote Sensing Images via Minimum Change Rate Deviation Method [J].
Dianat, Rouhollah ;
Kasaei, Shohreh .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (01) :198-206
[4]   Modified Fisher's linear discriminant analysis for hyperspectral imagery [J].
Du, Qian .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (04) :503-507
[5]   Band, selection for hyperspectral image classification using mutual information [J].
Guo, Baofeng ;
Gunn, Steve R. ;
Damper, R. I. ;
Nelson, J. D. B. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (04) :522-526
[6]   Analysis of a complex of statistical variables into principal components [J].
Hotelling, H .
JOURNAL OF EDUCATIONAL PSYCHOLOGY, 1933, 24 :417-441
[7]   Nonparametric weighted feature extraction for classification [J].
Kuo, BC ;
Landgrebe, DA .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (05) :1096-1105
[8]  
LI CH, 2008, P IEEE IGARSS BOST M
[9]  
Mingyi He, 2010, 2010 5th IEEE Conference on Industrial Electronics and Applications (ICIEA 2010), P2323, DOI 10.1109/ICIEA.2010.5516724
[10]   Feature reduction using a singular value decomposition for the iterative guided spectral class rejection hybrid classifier [J].
Phillips, Rhonda D. ;
Watson, Layne T. ;
Wynne, Randolph H. ;
Blinn, Christine E. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2009, 64 (01) :107-116