The tomato Rme1 locus is required for Mi-1-mediated resistance to root-knot nematodes and the potato aphid

被引:59
作者
de Ilarduya, OM [1 ]
Moore, AE [1 ]
Kaloshian, I [1 ]
机构
[1] Univ Calif Riverside, Dept Nematol, Riverside, CA 92521 USA
关键词
mutagenesis; resistance pathway; root-knot nematodes; tomato; potato aphid; Mi;
D O I
10.1046/j.1365-313X.2001.01112.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The tomato Mi-1 gene confers resistance against root-knot nematodes (Meloidogyne spp.) and a biotype of the potato aphid (Macrosiphum euphorbiae). Four mutagenized Mi-1/Mi-1 tomato populations were generated and screened for altered root-knot nematode resistance. Four independent mutants belonging to two phenotypic classes were isolated. One mutant was chosen for further analyzes; rme1 (for resistance to Meloidogyne) exhibited levels of infection comparable with those found on susceptible controls. Molecular and genetic data confirmed that rme1 has a single recessive mutation in a locus different from Mi-1. Cross-sections through galls formed by feeding nematodes on rme1 roots were identical to sections from galls of susceptible tomato roots. In addition to nematode susceptibility, infestation of rme1 plants with the potato aphid showed that this mutation also abolished aphid resistance. To determine whether Rme1 functions in a general disease-resistance pathway, the response against Fusarium oxysporum f.sp. lycopersici race 2, mediated by the I-2 resistance gene, was studied. Both rme1 and the wild type plants were equally resistant to the fungal pathogen. These results indicate that Rme1 does not play a general role in disease resistance but may be specific for Mi-1-mediated resistance.
引用
收藏
页码:417 / 425
页数:9
相关论文
共 45 条
[1]   Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis [J].
Aarts, N ;
Metz, M ;
Holub, E ;
Staskawicz, BJ ;
Daniels, MJ ;
Parker, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (17) :10306-10311
[2]   The Arabidopsis downy mildew resistance gene, RPP13-Nd, functions independently of NDR1 and EDS1 and does not require the accumulation of salicylic acid [J].
Bittner-Eddy, PD ;
Beynon, JL .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2001, 14 (03) :416-421
[3]  
Byrd D.W., 1983, J NEMATOL, V15, P142
[4]   The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number [J].
Dixon, MS ;
Hatzixanthis, K ;
Jones, DA ;
Harrison, K ;
Jones, JDG .
PLANT CELL, 1998, 10 (11) :1915-1925
[5]   Genetic complexity of pathogen perception by plants:: The example of Rcr3, a tomato gene required specifically by Cf-2 [J].
Dixon, MS ;
Golstein, C ;
Thomas, CM ;
van der Biezen, EA ;
Jones, JDG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (16) :8807-+
[6]   CELLULAR RESPONSES OF PLANTS TO NEMATODE INFECTIONS [J].
DROPKIN, VH .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 1969, 7 :101-+
[7]   Structure and function of proteins controlling strain-specific pathogen resistance in plants [J].
Ellis, J ;
Jones, D .
CURRENT OPINION IN PLANT BIOLOGY, 1998, 1 (04) :288-293
[8]   Use of Arabidopsis for genetic dissection of plant defense responses [J].
Glazebrook, J ;
Rogers, EE ;
Ausubel, FM .
ANNUAL REVIEW OF GENETICS, 1997, 31 :547-569
[9]  
Glazebrook J, 1996, GENETICS, V143, P973
[10]   STRUCTURE OF THE ARABIDOPSIS RPM1 GENE ENABLING DUAL-SPECIFICITY DISEASE RESISTANCE [J].
GRANT, MR ;
GODIARD, L ;
STRAUBE, E ;
ASHFIELD, T ;
LEWALD, J ;
SATTLER, A ;
INNES, RW ;
DANGL, JL .
SCIENCE, 1995, 269 (5225) :843-846