Optically sensing additional sonication effects on dispersed HiPco nanotubes in aerated water

被引:27
作者
Benedict, B
Pehrsson, PE
Zhao, W
机构
[1] Univ Arkansas, Dept Chem, Little Rock, AR 72204 USA
[2] USN, Res Lab, Div Chem, Washington, DC 20375 USA
关键词
D O I
10.1021/jp0406161
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ultrasonication is a necessary process to make single-walled carbon nanotubes (SWNTs) soluble in aqueous solution with surfactants such as sodium dodecyl sulfate (SDS). However, an understanding of the sonication effects on the electronic and optical properties of SWNTs in aqueous solution is still lacking. Here, we have observed that sonication-induced pH changes suppress the optical transitions of the first interband transition pair (S-11) in the density of states of semiconducting SWNTs while other possible intermediates induced by sonication contribute less significantly to the observed spectral changes without the involvement of sonication-induced pH decrease. The suppressed S-11 peaks can be restored by adding basic solution, suggesting that the lattice structure of SWNTs is undisrupted by the sonication used here. The absorbance of S-11 peaks shows a nearly linear relationship with sonication-induced pH changes in the narrow pH range of 5.2 and 6.1. The results indicate that SDS-encased SWNTs may be used as an indicator for sonolysis-related applications.
引用
收藏
页码:7778 / 7780
页数:3
相关论文
共 34 条
[1]   Enzyme-coated carbon nanotubes as single-molecule biosensors [J].
Besteman, K ;
Lee, JO ;
Wiertz, FGM ;
Heering, HA ;
Dekker, C .
NANO LETTERS, 2003, 3 (06) :727-730
[2]  
Beuthe H, 1933, Z PHYS CHEM A-CHEM T, V163, P161
[3]   Influence of mobile ions on nanotube based FET devices [J].
Bradley, K ;
Cumings, J ;
Star, A ;
Gabriel, JCP ;
Grüner, G .
NANO LETTERS, 2003, 3 (05) :639-641
[4]   An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices [J].
Chen, RJ ;
Choi, HC ;
Bangsaruntip, S ;
Yenilmez, E ;
Tang, XW ;
Wang, Q ;
Chang, YL ;
Dai, HJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (05) :1563-1568
[5]   Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors [J].
Chen, RJ ;
Bangsaruntip, S ;
Drouvalakis, KA ;
Kam, NWS ;
Shim, M ;
Li, YM ;
Kim, W ;
Utz, PJ ;
Dai, HJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (09) :4984-4989
[6]   Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J].
Cui, Y ;
Wei, QQ ;
Park, HK ;
Lieber, CM .
SCIENCE, 2001, 293 (5533) :1289-1292
[7]   Carbon nanotubes as molecular quantum wires [J].
Dekker, C .
PHYSICS TODAY, 1999, 52 (05) :22-28
[8]   Single-wall carbon nanotube interaction with gases: Sample contaminants and environmental monitoring [J].
Goldoni, A ;
Larciprete, R ;
Petaccia, L ;
Lizzit, S .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (37) :11329-11333
[9]   Direct electron transfer of glucose oxidase on carbon nanotubes [J].
Guiseppi-Elie, A ;
Lei, CH ;
Baughman, RH .
NANOTECHNOLOGY, 2002, 13 (05) :559-564
[10]   Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors [J].
Hahm, J ;
Lieber, CM .
NANO LETTERS, 2004, 4 (01) :51-54