Phase-field modeling of eutectic solidification

被引:230
作者
Kim, SG [1 ]
Kim, WT
Suzuki, T
Ode, M
机构
[1] Kunsan Natl Univ, Dept Mat Sci & Engn, Kunsan 573701, South Korea
[2] Chongju Univ, Div Appl Sci, Chonju 360764, South Korea
[3] Univ Tokyo, Dept Mat Sci & Engn, Tokyo 113, Japan
[4] Univ Tokyo, Grad Sch, Tokyo 113, Japan
关键词
A1. directional solidification; A1; eutectics; A1. growth models; A1. morphological stability;
D O I
10.1016/j.jcrysgro.2003.08.078
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
We present a eutectic phase-field model, developed by extending the interface field method (Steinbach and Pezzolla, Physica D 134 (1999) 385) under a condition that coexisting phases at a given point have an equal chemical potential difference between solute atom and solvent atom. Also an anisotropic eutectic phase-field equation is derived explicitly. The equilibrium interface geometries, calculated using the isotropic and anisotropic models, at a triple junction under a thermal gradient are in good agreement with the exact solutions, indicating the maintenance of mechanical equilibrium at the junction. The model successfully reproduces a variety of eutectic lamellar patterns observed in experiments on directional solidification of thin film CBr4-C2Cl6 organic alloys, under the real experimental conditions without any fitting parameters. Most of the characteristics of the pattern change with lamellar spacing in both eutectic and hypereutectic alloys are in good agreement with experimental observations. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:135 / 158
页数:24
相关论文
共 40 条
[1]  
AKAMATSU S, 2001, PHYS REV E, V66
[2]   Second-order phase field asymptotics for unequal conductivities [J].
Almgren, RF .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 59 (06) :2086-2107
[3]   SPATIAL SUBHARMONICS, IRRATIONAL PATTERNS, AND DISORDER IN EUTECTIC GROWTH [J].
BAUMANN, R ;
KASSNER, K ;
MISBAH, C ;
TEMKIN, DE .
PHYSICAL REVIEW LETTERS, 1995, 74 (09) :1597-1600
[4]   STEFAN AND HELE-SHAW TYPE MODELS AS ASYMPTOTIC LIMITS OF THE PHASE-FIELD EQUATIONS [J].
CAGINALP, G .
PHYSICAL REVIEW A, 1989, 39 (11) :5887-5896
[5]   DIFFUSE INTERFACE MODEL OF DIFFUSION-LIMITED CRYSTAL-GROWTH [J].
COLLINS, JB ;
LEVINE, H .
PHYSICAL REVIEW B, 1985, 31 (09) :6119-6122
[6]   Phase-field modeling of eutectic growth [J].
Drolet, F ;
Elder, KR ;
Grant, M ;
Kosterlitz, JM .
PHYSICAL REVIEW E, 2000, 61 (06) :6705-6720
[7]  
Elder KR, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.021604
[8]   STOCHASTIC EUTECTIC GROWTH [J].
ELDER, KR ;
DROLET, F ;
KOSTERLITZ, JM ;
GRANT, M .
PHYSICAL REVIEW LETTERS, 1994, 72 (05) :677-680
[9]   DYNAMIC WAVELENGTH SELECTION BY TILT DOMAINS IN THIN-FILM LAMELLAR EUTECTIC GROWTH [J].
FAIVRE, G ;
MERGY, J .
PHYSICAL REVIEW A, 1992, 46 (02) :963-972
[10]   Morphological instabilities of lamellar eutectic growth fronts: A survey of recent experimental and numerical results [J].
Faivre, G .
JOURNAL OF CRYSTAL GROWTH, 1996, 166 (1-4) :29-39