Tissue engineering of blood vessels with endothelial cells differentiated from mouse embryonic stem cells

被引:47
作者
Shen, G [1 ]
Tsung, HC [1 ]
Wu, CF [1 ]
Liu, XY [1 ]
Wang, XY [1 ]
Liu, W [1 ]
Cui, L [1 ]
Cao, YL [1 ]
机构
[1] Shanghai 2 Med Univ, Shanghai Peoples Hosp 9, Dept Plast & Reconstruct Surg, Shanghai Key Lab Tissure Engn, Shanghai 200011, Peoples R China
关键词
tissue engineering; embryonic stem cell; blood vessel; differentiation; endothelial cell;
D O I
10.1038/sj.cr.7290178
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Endothelial cells (TEC3 cells) derived from mouse embryonic stem (ES) cells were used as seed cells to construct blood vessels. Tissue engineered blood vessels were made by seeding 8 X 101 smooth muscle cells (SMCs) obtained from rabbit arteries onto a sheet of nonwoven polyglycolic acid (PGA) fibers, which was used as a biodegradable polymer scaffold. After being cultured in DMEM medium for 7 days in vitro, SMCs grew well on the PGA fibers, and the cell-PGA sheet was then wrapped around a silicon tube, and implanted subcutaneously into nude mice. After 6similar to8 weeks, the silicon tube was replaced with another silicon tube in smaller diameter, and then the TEC3 cells (endothelial cells differentiated from mouse ES cells) were injected inside the engineered vessel tube as the test group. In the control group only culture medium was injected. Five days later, the engineered vessels were harvested for gross observation, histological and immunohistochemical analysis. The preliminary results demonstrated that the SMC-PGA construct could form a tubular structure in 6-8 weeks and PGA fibers were completely degraded. Histological and immunohistochemical analysis of the newly formed tissue revealed a typical blood vessel structure, including a lining of endothelial cells (ECs) on the lumimal surface and the presence of SMC and collagen in the wall. No EC lining was found in the tubes of control group. Therefore, the ECs differentiated from mouse ES cells can serve as seed cells for endothelium lining in tissue engineered blood vessels.
引用
收藏
页码:335 / 341
页数:7
相关论文
共 21 条
[1]   Development of endothelial cell lines from embryonic stem cells - A tool for studying genetically manipulated endothelial cells in vitro [J].
Balconi, G ;
Spagnuolo, R ;
Dejana, E .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2000, 20 (06) :1443-1451
[2]   Extension of life-span by introduction of telomerase into normal human cells [J].
Bodnar, AG ;
Ouellette, M ;
Frolkis, M ;
Holt, SE ;
Chiu, CP ;
Morin, GB ;
Harley, CB ;
Shay, JW ;
Lichtsteiner, S ;
Wright, WE .
SCIENCE, 1998, 279 (5349) :349-352
[3]   Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells [J].
Buttery, LDK ;
Bourne, S ;
Xynos, JD ;
Wood, H ;
Hughes, FJ ;
Hughes, SPF ;
Episkopou, V ;
Polak, JM .
TISSUE ENGINEERING, 2001, 7 (01) :89-99
[4]   ESTABLISHMENT IN CULTURE OF PLURIPOTENTIAL CELLS FROM MOUSE EMBRYOS [J].
EVANS, MJ ;
KAUFMAN, MH .
NATURE, 1981, 292 (5819) :154-156
[5]   Maturation of embryonic stem cells into endothelial cells in an in vitro model of vasculogenesis [J].
Hirashima, M ;
Kataoka, H ;
Nishikawa, S ;
Matsuyoshi, N ;
Nishikawa, SI .
BLOOD, 1999, 93 (04) :1253-1263
[6]   A completely biological tissue-engineered human blood vessel [J].
L'Heureux, N ;
Pâquet, S ;
Labbé, R ;
Germain, L ;
Auger, FA .
FASEB JOURNAL, 1998, 12 (01) :47-56
[7]   TISSUE ENGINEERING [J].
LANGER, R ;
VACANTI, JP .
SCIENCE, 1993, 260 (5110) :920-926
[8]   Endothelial cells derived from human embryonic stem cells [J].
Levenberg, S ;
Golub, JS ;
Amit, M ;
Itskovitz-Eldor, J ;
Langer, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (07) :4391-4396
[9]   INVITRO CONSTRUCTION OF A HUMAN BLOOD-VESSEL FROM CULTURED VASCULAR CELLS - A MORPHOLOGIC STUDY [J].
LHEUREUX, N ;
GERMAIN, L ;
LABBE, R ;
AUGER, FA .
JOURNAL OF VASCULAR SURGERY, 1993, 17 (03) :499-509
[10]  
LIU DL, 2002, 47 ANN M PLAST SURG