Enclosing a set of objects by two minimum area rectangles

被引:4
作者
Becker, B
Franciosa, PG
Gschwind, S
Leonardi, S
Ohler, T
Widmayer, P
机构
[1] UNIV ROMA LA SAPIENZA, DIPARTIMENTO INFORMAT & SISTEMIST, I-00198 ROME, ITALY
[2] ETH ZENTRUM, INST THEORET INFORMAT, CH-8092 ZURICH, SWITZERLAND
来源
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC | 1996年 / 21卷 / 03期
关键词
D O I
10.1006/jagm.1996.0057
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we face the problem of computing an enclosing pair of axis-parallel rectangles of a set of polygonal objects in the plane, serving as a simple container. We propose an O(n alpha(n)log n) worst-case time algorithm, where alpha() is the inverse Ackermann's function, for finding, given a set M of points, segments and polygons defined by n vertices, a pair of axis-parallel rectangles (s,t) such that s boolean OR t encloses all objects in M and area(s) + area(t) is minimum. The algorithm works in O(n alpha (n) log log n) worst-case space. Moreover, we prove an Omega(n log n) lower bound for the one-dimensional version of the problem. We also show that for the special case of enclosing a set of polygons with axis-parallel sides, our algorithm runs in optimal worst-case time O(n log n), using worst-case space O(n log log n). (C) 1996 Academic Press, Inc.
引用
收藏
页码:520 / 541
页数:22
相关论文
共 21 条
[1]   A LINEAR-TIME ALGORITHM FOR COMPUTING THE VORONOI DIAGRAM OF A CONVEX POLYGON [J].
AGGARWAL, A ;
GUIBAS, LJ ;
SAXE, J ;
SHOR, PW .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (06) :591-604
[2]   Minimum area circumscribing Polygons [J].
Aggarwal, Alok ;
Chang, J. S. ;
Yap, Chee K. .
VISUAL COMPUTER, 1985, 1 (02) :112-117
[3]  
ALT H, 1990, LECT NOTES COMPUT SC, V443, P703
[4]  
BECKER B, 1992, LECT NOTES COMPUT SC, V577, P475
[5]  
BECKER B, 1991, LECT NOTES COMPUT SC, V553, P13
[6]  
DEPANO NAA, 1984, 22ND P ALL C URB, P81
[7]   COMPACT INTERVAL TREES: A DATA STRUCTURE FOR CONVEX HULLS [J].
Guibas, Leonidas ;
Hershberger, John ;
Snoeyink, Jack .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1991, 1 (01) :1-22
[8]   FINDING THE UPPER ENVELOPE OF N LINE SEGMENTS IN O(N LOG N) TIME [J].
HERSHBERGER, J .
INFORMATION PROCESSING LETTERS, 1989, 33 (04) :169-174
[9]   FINDING TAILORED PARTITIONS [J].
HERSHBERGER, J ;
SURI, S .
JOURNAL OF ALGORITHMS, 1991, 12 (03) :431-463
[10]   LINEAR-TIME ALGORITHMS FOR LINEAR-PROGRAMMING IN R3 AND RELATED PROBLEMS [J].
MEGIDDO, N .
SIAM JOURNAL ON COMPUTING, 1983, 12 (04) :759-776