Thermal energy storage: "How previous findings determine current research priorities"

被引:268
作者
Fernandes, D. [2 ]
Pitie, F. [1 ]
Caceres, G. [2 ]
Baeyens, J. [3 ]
机构
[1] Univ Warwick, Sch Engn, Coventry CV8 1JE, W Midlands, England
[2] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7941169, Chile
[3] Beijing Univ Chem Technol, Coll Life Sci & Technol, Beijing, Peoples R China
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
Thermal energy storage; Heat transfer enhancement; PCM; Metal foam; Energy storage; Composite materials; PHASE-CHANGE MATERIALS; LATENT-HEAT STORAGE; CARBON-FIBER BRUSHES; METAL FOAMS; TRANSFER ENHANCEMENT; CONDUCTIVITY ENHANCEMENT; TRANSFER FLUID; SYSTEM; PCM; MICROCAPSULES;
D O I
10.1016/j.energy.2012.01.024
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermal energy storage is an expanding field within the subject of renewable energy technologies. After a listing of the different possibilities available for energy storage, this paper provides a comparison of various materials for High Temperature Thermal Energy Storage (HTTS). Several attributes and needs of each solution are listed. One in particular is using the latent heat as one of the most efficient ways to store thermal energy. The mixture of phase change material (PCM) embedded in a metal foam is optimising the thermal properties of the material for latent heat energy storage. The results of previous studies show that mechanical and thermal properties of foam were extensively studied separately. This paper highlights the potential for an advanced study of thermo-mechanical properties of metal foams embedded with PCM. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:246 / 257
页数:12
相关论文
共 76 条
[1]   Thermal conductivity and mechanical properties of expanded graphite [J].
Afanasov, I. M. ;
Savchenko, D. V. ;
Ionov, S. G. ;
Rusakov, D. A. ;
Seleznev, A. N. ;
Avdeev, V. V. .
INORGANIC MATERIALS, 2009, 45 (05) :486-490
[2]   A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) [J].
Agyenim, Francis ;
Hewitt, Neil ;
Eames, Philip ;
Smyth, Mervyn .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (02) :615-628
[3]   Thermal conductivity of high-temperature multicomponent materials with phase change [J].
Aktay, K. S. do Couto ;
Tamme, R. ;
Mueller-Steinhagen, H. .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2008, 29 (02) :678-692
[4]   Analytical and numerical prediction of heat transfer and pressure drop in open-cell metal foams [J].
Bai, Mo ;
Chung, J. N. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2011, 50 (06) :869-880
[5]  
Bradbury K, 2010, SUSTAINABLE ENERGY M
[6]   Testing of thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems in parabolic trough power plants [J].
Brosseau, D ;
Kelton, JW ;
Ray, D ;
Edgar, M ;
Chisman, K ;
Emms, B .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2005, 127 (01) :109-116
[7]  
Castellon C, 2007, BUILD X P CLEARW BEA
[8]   An experimental study of convective heat transfer with microencapsulated phase change material suspension: Laminar flow in a circular tube under constant heat flux [J].
Chen, Binjiao ;
Wang, Xin ;
Zeng, Ruolang ;
Zhang, Yinping ;
Wang, Xichun ;
Niu, Jianlei ;
Li, Yi ;
Di, Hongfa .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2008, 32 (08) :1638-1646
[9]   Progress in electrical energy storage system: A critical review [J].
Chen, Haisheng ;
Cong, Thang Ngoc ;
Yang, Wei ;
Tan, Chunqing ;
Li, Yongliang ;
Ding, Yulong .
PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2009, 19 (03) :291-312
[10]   Heat transfer performance analysis of a solar flat-plate collector with an integrated metal foam porous structure filled with paraffin [J].
Chen, Zhenqian ;
Gu, Mingwei ;
Peng, Donghua .
APPLIED THERMAL ENGINEERING, 2010, 30 (14-15) :1967-1973