Cryptanalysis of the Chor-Rivest cryptosystem

被引:25
作者
Vaudenay, S [1 ]
机构
[1] Ecole Normale Super, CNRS, F-75230 Paris 05, France
关键词
knapsack cryptosystem; finite fields;
D O I
10.1007/s001450010005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Knapsack-based cryptosystems used to be popular in the beginning of public key cryptography before all but the Chor-Rivest cryptosystem being broken. In this paper we show how to break this one with its suggested parameters: GF(p(24)) and GF(256(25)). We also give direction on possible extensions of our attack.
引用
收藏
页码:87 / 100
页数:14
相关论文
共 13 条
[1]  
CAMION P, 1997, LECT NOTES COMPUTER, V1334, P381
[2]   A KNAPSACK-TYPE PUBLIC KEY CRYPTOSYSTEM BASED ON ARITHMETIC IN FINITE-FIELDS [J].
CHOR, B ;
RIVEST, RL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (05) :901-909
[3]  
CHOR B, 1985, LNCS, V196, P54
[4]   The security of the birational permutation signature schemes [J].
Coppersmith, D ;
Stern, J ;
Vaudenay, S .
JOURNAL OF CRYPTOLOGY, 1997, 10 (03) :207-221
[5]   SPECIALIZED ATTACK ON CHOR RIVEST PUBLIC KEY CRYPTOSYSTEM [J].
HUBER, K .
ELECTRONICS LETTERS, 1991, 27 (23) :2130-2131
[6]   Lattice reduction: A toolbox for the cryptanalyst [J].
Joux, A ;
Stern, J .
JOURNAL OF CRYPTOLOGY, 1998, 11 (03) :161-185
[7]  
Koblitz N., 1994, GRADUATE TEXTS MATH, V114
[8]   FACTORING POLYNOMIALS WITH RATIONAL COEFFICIENTS [J].
LENSTRA, AK ;
LENSTRA, HW ;
LOVASZ, L .
MATHEMATISCHE ANNALEN, 1982, 261 (04) :515-534
[9]  
Lenstra H. W. Jr., 1991, Journal of Cryptology, V3, P149, DOI 10.1007/BF00196908
[10]   HIDING INFORMATION AND SIGNATURES IN TRAPDOOR KNAPSACKS [J].
MERKLE, RC ;
HELLMAN, ME .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (05) :525-530