Renormalization group analysis of spectral problems in quantum field theory

被引:130
作者
Bach, V
Frohlich, J
Sigal, IM
机构
[1] Tech Univ Berlin, Fachbereich Math MA 7 2, D-10623 Berlin, Germany
[2] ETH Honggerberg, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[3] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
关键词
renormalization group; spectrum; resonances; Fock space; QED;
D O I
10.1006/aima.1998.1733
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we present a self-contained and detailed exposition of the new renormalization group technique proposed in [1, 2]. Its main feature is that the renormalization group transformation acts directly on a space of operators rather than on objects such as a propagator, the partition function, or correlation functions. We apply this renormalization transformation to a Hamiltonian describing the physics of an atom interacting with the quantized electromagnetic field, and we prove that excited atomic states turn into resonances when the coupling between electrons and field is nonvanishing. (C) 1998 Academic Press.
引用
收藏
页码:205 / 298
页数:94
相关论文
共 7 条
[1]   MATHEMATICAL-THEORY OF NONRELATIVISTIC MATTER AND RADIATION [J].
BACH, V ;
FROHLICH, J ;
SIGAL, IM .
LETTERS IN MATHEMATICAL PHYSICS, 1995, 34 (03) :183-201
[2]   Quantum electrodynamics of confined nonrelativistic particles [J].
Bach, V ;
Frohlich, J ;
Sigal, IM .
ADVANCES IN MATHEMATICS, 1998, 137 (02) :299-395
[3]  
CYCON H. L, 1987, Schrodinger operators with application to quantum mechanics and global geometry
[4]  
GRADSTEIN IS, 1980, TABLE INTEGRALS SERI
[5]  
Hislop P. D., 1996, INTRO SPECTRAL THEOR
[6]  
Kato T., 1976, GRUNDLEHREN MATH WIS, V132
[7]  
REED M., 1979, Methods of Modern Mathematical Physics