Telomerase and human tumorigenesis

被引:123
作者
Stewart, SA
Weinberg, RA
机构
[1] MIT, Whitehead Inst Biomed Res, Cambridge, MA 02142 USA
[2] MIT, Dept Biol, Cambridge, MA 02142 USA
关键词
telomere; telomerase; senescence; crisis;
D O I
10.1006/scbi.2000.0339
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Human cancer cells, unlike their normal counterparts, have shed the molecular restraints to limited cell growth and are immortal. Exactly how cancer cells manage this at the molecular level is beginning to be understood. Human cells must overcome two barriers to cellular proliferation. The first barrier referred to as senescence, minimally involves the p53 and Rb tumor-suppressor pathways. Inactivation of these pathways results in some extension of lifespan. However inactivation of these pathways is insufficient for immortalization. As normal cells undergo repeated rounds of DNA replication, their telomeres shorten due to the inability of traditional DNA polymerases to completely replicate the end of the chromosomal DNA. This shortening continues until the cells reach a second proliferative block referred to as crisis, which is characterized by chromosomal instability end-re-end fusions, and cell death. Stabilization of the telomeric DNA through either telomerase activation or the activation of the alternative mechanism of telomere maintenance (ALT) is essential if the cells are to survive and proliferate indefinitely. Conversely, loss of telomere stabilization by an already-immortalized cell results in loss of immortality and cell death. Together this indicates that telomere maintenance is a critical component of immortality. In this review we attempt to describe our current understanding of the role of telomere maintenance in senescence, crisis, and tumorigenesis.
引用
收藏
页码:399 / 406
页数:8
相关论文
共 59 条
[1]   TELOMERE LENGTH PREDICTS REPLICATIVE CAPACITY OF HUMAN FIBROBLASTS [J].
ALLSOPP, RC ;
VAZIRI, H ;
PATTERSON, C ;
GOLDSTEIN, S ;
YOUNGLAI, EV ;
FUTCHER, AB ;
GREIDER, CW ;
HARLEY, CB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (21) :10114-10118
[2]   STRUCTURE OF HIV-1 REVERSE-TRANSCRIPTASE DNA COMPLEX AT 7-A RESOLUTION SHOWING ACTIVE-SITE LOCATIONS [J].
ARNOLD, E ;
JACOBOMOLINA, A ;
NANNI, RG ;
WILLIAMS, RL ;
LU, XD ;
DING, JP ;
CLARK, AD ;
ZHANG, AQ ;
FERRIS, AL ;
CLARK, P ;
HIZI, A ;
HUGHES, SH .
NATURE, 1992, 357 (6373) :85-89
[3]   Telomere shortening and tumor formation by mouse cells lacking telomerase RNA [J].
Blasco, MA ;
Lee, HW ;
Hande, MP ;
Samper, E ;
Lansdorp, PM ;
DePinho, RA ;
Greider, CW .
CELL, 1997, 91 (01) :25-34
[4]   Extension of life-span by introduction of telomerase into normal human cells [J].
Bodnar, AG ;
Ouellette, M ;
Frolkis, M ;
Holt, SE ;
Chiu, CP ;
Morin, GB ;
Harley, CB ;
Shay, JW ;
Lichtsteiner, S ;
Wright, WE .
SCIENCE, 1998, 279 (5349) :349-352
[5]   The telomere lengthening mechanism in telomerase-negative immortal human cells does not involve the telomerase RNA subunit [J].
Bryan, TM ;
Marusic, L ;
Bacchetti, S ;
Namba, M ;
Reddel, RR .
HUMAN MOLECULAR GENETICS, 1997, 6 (06) :921-926
[6]   TELOMERE ELONGATION IN IMMORTAL HUMAN-CELLS WITHOUT DETECTABLE TELOMERASE ACTIVITY [J].
BRYAN, TM ;
ENGLEZOU, A ;
GUPTA, J ;
BACCHETTI, S ;
REDDEL, RR .
EMBO JOURNAL, 1995, 14 (17) :4240-4248
[7]   LIMITED LIFESPAN IN SOMATIC-CELL HYBRIDS AND CYBRIDS [J].
BUNN, CL ;
TARRANT, GM .
EXPERIMENTAL CELL RESEARCH, 1980, 127 (02) :385-396
[8]   p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis [J].
Chin, L ;
Artandi, SE ;
Shen, Q ;
Tam, A ;
Lee, SL ;
Gottlieb, GJ ;
Greider, CW ;
DePinho, RA .
CELL, 1999, 97 (04) :527-538
[9]   Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization [J].
Counter, CM ;
Hahn, WC ;
Wei, WY ;
Caddle, SD ;
Beijersbergen, RL ;
Lansdorp, PM ;
Sedivy, JM ;
Weinberg, RA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14723-14728
[10]   TELOMERE SHORTENING ASSOCIATED WITH CHROMOSOME INSTABILITY IS ARRESTED IN IMMORTAL CELLS WHICH EXPRESS TELOMERASE ACTIVITY [J].
COUNTER, CM ;
AVILION, AA ;
LEFEUVRE, CE ;
STEWART, NG ;
GREIDER, CW ;
HARLEY, CB ;
BACCHETTI, S .
EMBO JOURNAL, 1992, 11 (05) :1921-1929