Early and Late Events Induced by PolyQ-expanded Proteins IDENTIFICATION OF A COMMON PATHOGENIC PROPERTY OF POLYQ-EXPANDED PROTEINS

被引:58
作者
Bertoni, Alessandra
Giuliano, Paola
Galgani, Mario
Rotoli, Deborah [2 ]
Ulianich, Luca [2 ]
Adornetto, Annagrazia [3 ]
Santillo, Maria Rosaria [3 ]
Porcellini, Antonio [4 ,5 ]
Avvedimento, Vittorio Enrico [1 ]
机构
[1] Univ Naples Federico II, Sch Med, Dept Mol & Cellular Biol & Pathol, I-80131 Naples, Italy
[2] CNR, Inst Endocrinol & Expt Oncol, I-80125 Naples, Italy
[3] Univ Naples Federico II, Sch Med, Physiol Unit, Dept Neurosci, I-80131 Naples, Italy
[4] Univ Molise, Dept Hlth Sci, I-86100 Campobasso, Italy
[5] Univ Naples Federico II, Dept Struct & Funct Biol, I-80126 Naples, Italy
关键词
DNA-DAMAGE; LIPID RAFTS; NEUROBLASTOMA-CELLS; NADPH OXIDASES; NOX FAMILY; HUNTINGTIN; TRANSCRIPTION; PROTEASOME; SYSTEM; ROS;
D O I
10.1074/jbc.M110.156521
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To find a common pathogenetic trait induced by polyQ-expanded proteins, we have used a conditional expression system in PC12 cells to tune the expression of these proteins and analyze the early and late consequences of their expression. We find that expression for 3 h of a polyQ-expanded protein stimulates cellular reactive oxygen species (ROS) levels and significantly reduces the mitochondrial electrochemical gradient. 24-36 h later, ROS induce DNA damage and activation of the checkpoint kinase, ATM. DNA damage signatures are reversible and persist as long as polyQ-expanded proteins are expressed. Transcription of neural and stress response genes is down-regulated in these cells. Selective inhibition of ATM or histone deacetylase rescues transcription and restores the expression of silenced genes. Eventually, after 1 week, the expression of polyQ-expanded protein also induces endoplasmic reticulum stress. As to the primary mechanism responsible for ROS generation, we find that polyQ-expanded proteins, including native Ataxin-2 and Huntingtin, are selectively sequestered in the lipid raft membrane compartment and interact with gp91, the membrane NADPH-oxidase subunit. Selective inhibition of NADPH oxidase or silencing of H-Ras signaling dissolves the aggregates and eliminates DNA damage. We suggest that targeting of the polyQ-expanded proteins to the lipid rafts activates the resident NADPH oxidase. This triggers a signal linking H-Ras, ROS, and ERK1/2 that maintains and propagates the ROS wave to the nucleus. This mechanism may represent the common pathogenetic signature of all polyQ-expanded proteins independently of the specific context or the function of the native wild type protein.
引用
收藏
页码:4727 / 4741
页数:15
相关论文
共 53 条
[1]   Calcium signals induced by amylold β peptide and their consequences in neurons and astrocytes in culture [J].
Abramov, AY ;
Canevari, L ;
Duchen, MR .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2004, 1742 (1-3) :81-87
[2]   Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity [J].
Atwal, Randy Singh ;
Xia, Jianrun ;
Pinchev, Deborah ;
Taylor, Jillian ;
Epand, Richard M. ;
Truant, Ray .
HUMAN MOLECULAR GENETICS, 2007, 16 (21) :2600-2615
[3]   ER stress signaling by regulated splicing:: IRE1/HAC1/XBP1 [J].
Back, SH ;
Schröder, M ;
Lee, K ;
Zhang, KZ ;
Kaufman, RJ .
METHODS, 2005, 35 (04) :395-416
[4]   The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies [J].
Bauer, Peter O. ;
Nukina, Nobuyuki .
JOURNAL OF NEUROCHEMISTRY, 2009, 110 (06) :1737-1765
[5]   NOX family NADPH oxidases: Not just in mammals [J].
Bedard, Karen ;
Lardy, Bernard ;
Krause, Karl-Heinz .
BIOCHIMIE, 2007, 89 (09) :1107-1112
[6]   The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology [J].
Bedard, Karen ;
Krause, Karl-Heinz .
PHYSIOLOGICAL REVIEWS, 2007, 87 (01) :245-313
[7]   Impairment of the ubiquitin-proteasome system by protein aggregation [J].
Bence, NF ;
Sampat, RM ;
Kopito, RR .
SCIENCE, 2001, 292 (5521) :1552-1555
[8]   Global changes to the ubiquitin system in Huntington's disease [J].
Bennett, Eric J. ;
Shaler, Thomas A. ;
Woodman, Ben ;
Ryu, Kwon-Yul ;
Zaitseva, Tatiana S. ;
Becker, Christopher H. ;
Bates, Gillian P. ;
Schulman, Howard ;
Kopito, Ron R. .
NATURE, 2007, 448 (7154) :704-U11
[9]   Functions of lipid rafts in biological membranes [J].
Brown, DA ;
London, E .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :111-136
[10]   Striatal spiny neurons and cholinergic interneurons express differential ionotropic glutamatergic responses and vulnerability: Implications for ischemia and Huntington's disease [J].
Calabresi, P ;
Centonze, D ;
Pisani, A ;
Sancesario, G ;
Gubellini, P ;
Marfia, GA ;
Bernardi, G .
ANNALS OF NEUROLOGY, 1998, 43 (05) :586-597