3-D structure of nanosized catalysts by high-energy X-ray diffraction and reverse Monte Carlo simulations: Study of Ru

被引:38
作者
Bedford, N.
Dablemont, C.
Viau, G.
Chupas, P.
Petkov, V. [1 ]
机构
[1] Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA
[2] Univ Paris 07, UMR 7086, ITODYS, F-75251 Paris 05, France
[3] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
关键词
D O I
10.1021/jp0752062
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ruthenium exhibits a high catalytic activity that is further enhanced when the material is used as nanosized particles. The origin of the enhanced performance lies in the highly increased surface to volume ratio and, often, to the surface/environment-driven structural relaxation taking place at the nanoscale. In this paper, we show how high-energy X-ray diffraction, atomic pair distribution function analysis, and reverse Monte Carlo simulations may be used to determine the 3-D structure of nanoparticle catalysts such as Ru with sizes less than 5 nm. Ruthenium particles that are 4 nm in size are found to possess a hexagonal close packed-type structure, similar to that found in bulk Ru. Particles that are only 2 nm in size are heavily disordered and consist of a Ru core and a Ru-S skin due to the usage of thiol-based capping agents. This work is the first application of an approach for determining the atomic-scale structure of nanosized catalysts based entirely on experimental diffraction data. The new structural information is a starting point for a better understanding of the structure-property relationship and, hence, for the design of improved nanosized catalysts, including Ru.
引用
收藏
页码:18214 / 18219
页数:6
相关论文
共 29 条
[1]   Methane reaction with NO over alumina-supported Ru nanoparticles [J].
Balint, I ;
Miyazaki, A ;
Aika, K .
JOURNAL OF CATALYSIS, 2002, 207 (01) :66-75
[2]   Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol [J].
Bonet, F ;
Delmas, V ;
Grugeon, S ;
Urbina, RH ;
Silvert, PY ;
Tekaia-Elhsissen, K .
NANOSTRUCTURED MATERIALS, 1999, 11 (08) :1277-1284
[3]   Acetate- and thiol-capped monodisperse ruthenium nanoparticles:: XPS, XAS, and HRTEM studies [J].
Chakroune, N ;
Viau, G ;
Ammar, S ;
Poul, L ;
Veautier, D ;
Chehimi, MM ;
Mangeney, C ;
Villain, F ;
Fiévet, F .
LANGMUIR, 2005, 21 (15) :6788-6796
[4]   Permanent magnetism, magnetic anisotropy, and hysteresis of thiol-capped gold nanoparticles -: art. no. 087204 [J].
Crespo, P ;
Litrán, R ;
Rojas, TC ;
Multigner, M ;
de la Fuente, JM ;
Sánchez-López, JC ;
García, MA ;
Hernando, A ;
Penadés, S ;
Fernández, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (08) :087204-1
[5]  
Egami T, 2003, PERGAMON MATER SER, V7, pVII
[6]   ANALYSIS OF STRUCTURE OF A GLASSY CARBON USING FOURIER-TRANSFORM TECHNIQUE [J].
ERGUN, S ;
SCHEHL, RR .
CARBON, 1973, 11 (02) :127-138
[7]  
EVRARD G, 2005, J PHYS CONDENS MATT, V17, P1
[8]   A convenient solvothermal route to ruthenium nanoparticles [J].
Gao, S ;
Zhang, J ;
Zhu, YF ;
Che, CM .
NEW JOURNAL OF CHEMISTRY, 2000, 24 (10) :739-740
[9]   Carbon nanohorns grown from ruthenium nanoparticles [J].
Geng, JF ;
Ducati, C ;
Shephard, DS ;
Chhowalla, M ;
Johnson, BFG ;
Robertson, J .
CHEMICAL COMMUNICATIONS, 2002, (10) :1112-1113
[10]   DETERMINATION OF 3 BODY CORRELATIONS IN SIMPLE LIQUIDS BY RMC MODELING OF DIFFRACTION DATA .2. ELEMENTAL LIQUIDS [J].
HOWE, MA ;
MCGREEVY, RL ;
PUSZTAI, L ;
BORZSAK, I .
PHYSICS AND CHEMISTRY OF LIQUIDS, 1993, 25 (04) :205-241