Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach

被引:405
作者
Akhmediev, N [1 ]
Soto-Crespo, JM
Town, G
机构
[1] Australian Natl Univ, Inst Adv Studies, Res Sch Phys Sci & Engn, Ctr Opt Sci, Canberra, ACT 0200, Australia
[2] CSIC, Inst Opt, E-28006 Madrid, Spain
[3] Univ Sydney, Sch Elect & Informat Engn J03, Sydney, NSW 2006, Australia
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 05期
关键词
D O I
10.1103/PhysRevE.63.056602
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The complex Ginzburg-Landau equation (CGLE) is a standard model for pulse generation in mode-locked lasers with fast saturable absorbers. We have found complicated pulsating behavior of solitons of the CGLE and regions of their existence in the five-dimensional parameter space. We have found zero-velocity, moving and exploding pulsating localized structures, period doubling (PD) of pulsations and the sequence of PD bifurcations. We have also found chaotic pulsating solitons. We have plotted regions of parameters of the CGLE where pulsating solutions exist. We also demonstrate the coexistence (bi- and multistability) of different types of pulsating solutions in certain regions of the parameter: space of the CGLE.
引用
收藏
页码:566021 / 566021
页数:13
相关论文
共 42 条
[1]  
Ablowitz M. J., 1991, LONDON MATH SOC LECT, V149
[2]   Three forms of localized solutions of the quintic complex Ginzburg-Landau equation [J].
Afanasjev, VV ;
Akhmediev, N ;
SotoCrespo, JM .
PHYSICAL REVIEW E, 1996, 53 (02) :1931-1939
[3]  
Akhmediev N., 1997, SOLITONS NONLINEAR P
[4]   Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation [J].
Akhmediev, NN ;
Afanasjev, VV ;
SotoCrespo, JM .
PHYSICAL REVIEW E, 1996, 53 (01) :1190-1201
[5]   Composite solitons in optical systems with fast and slow saturable absorbers [J].
Akhmediev, NN ;
Soto-Crespo, JM .
SELECTED PAPERS FROM PHOTONICS INDIA '98, 1999, 3666 :307-316
[6]   Asymmetrical splitting of higher-order optical solitons induced by quintic nonlinearity [J].
Artigas, D ;
Torner, L ;
Torres, JP ;
Akhmediev, NN .
OPTICS COMMUNICATIONS, 1997, 143 (4-6) :322-328
[7]   COUPLED-CAVITY MODE-LOCKING - A NONLINEAR MODEL [J].
BELANGER, PA .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1991, 8 (10) :2077-2081
[8]   Transverse oscillation arising from spatial soliton formation in nonlinear optical cavities [J].
Boyce, J ;
Chiao, RY .
PHYSICAL REVIEW A, 1999, 59 (05) :3953-3958
[9]   Influence of noise in the route to chaos of directly modulated semiconductor lasers [J].
Carpintero, G ;
Lamela, H .
JOURNAL OF APPLIED PHYSICS, 1997, 82 (06) :2766-2772
[10]   SOLITON AND COLLAPSE REGIMES OF PULSE GENERATION IN PASSIVELY MODE-LOCKING LASER SYSTEMS [J].
CHERNYKH, AI ;
TURITSYN, SK .
OPTICS LETTERS, 1995, 20 (04) :398-400