Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes

被引:648
作者
Ludwig, JA
Wilcox, BP
Breshears, DD
Tongway, DJ
Imeson, AC
机构
[1] CRC, Trop Savannas, Atherton, Qld 4883, Australia
[2] CSIRO, Sustainable Ecosyst, Atherton, Qld 4883, Australia
[3] Texas A&M Univ, Dept Rangeland Ecol & Management, College Stn, TX 77845 USA
[4] Univ Arizona, Sch Nat Resources, Tucson, AZ 85721 USA
[5] CSIRO Sustainbale Ecosyst, Canberra, ACT 2601, Australia
[6] Univ Amsterdam, Landscape & Environm Res Grp, NL-10181 JV Amsterdam, Netherlands
关键词
hydrology; landscape ecology; landscape function; runoff; soil erosion;
D O I
10.1890/03-0569
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Ecological and hydrological processes can interact strongly in landscapes, yet these processes are often studied separately. One particularly important interaction between these processes in patchy semiarid lands is how vegetation patches serve to obstruct runoff and then how this retained water increases patch growth that, in turn, provides feedbacks to the system. Such ecohydrological interactions have been mostly demonstrated for semiarid landscapes with distinctly banded vegetation patterns. In this paper, we use data from our studies and from the literature to evaluate how strongly four ecohydrological interactions apply across other patchy semiarid vegetations, and how these interactions are affected by disturbances. We specifically address four questions concerning ecohydrological interactions: (1) if vegetation patches obstruct runoff flows during rainfall events, how much more soil water is stored in these patches compared to open interpatch areas; (2) if inputs of water are higher in patches, how much stronger is the pulse of plant growth compared to interpatches; (3) if more soil water in patches promotes greater biological activity by organisms such as earthworms that create macropores, how much does this improve soil infiltrability; and (4) if vegetation patches are damaged on a hillslope, how much does this increase runoff and erosion and decrease biomass production? We used the trigger-transfer-reserve-pulse framework developed for Australian semiarid woodlands to put these four questions into a landscape context. For a variety of patchy semiarid vegetation types in Australia, Europe, and North America, we found that patches significantly stored more soil water, produced more growth and had better infiltrability than interpatches, and that runoff and erosion can markedly increase on disturbed hillslopes. However, these differences varied greatly and appeared to depend on factors such as the intensity and amount of input events (rainstorms) and type of topography, soils, and vegetation. Experimental and modeling studies are needed to better quantify how these factors specifically affect ecohydrological interactions. Our current findings do support the conclusion that vegetation patches and runoff-erosion processes do strongly interact in many semiarid landscapes across the globe, not just banded landscapes.
引用
收藏
页码:288 / 297
页数:10
相关论文
共 57 条
[1]   A sediment transport equation for interrill overland flow on rough surfaces [J].
Abrahams, AD ;
Li, G ;
Krishnan, C ;
Atkinson, JF .
EARTH SURFACE PROCESSES AND LANDFORMS, 2001, 26 (13) :1443-1459
[2]   The effect of grazing on the spatial heterogeneity of vegetation [J].
Adler, PB ;
Raff, DA ;
Lauenroth, WK .
OECOLOGIA, 2001, 128 (04) :465-479
[3]  
[Anonymous], [No title captured]
[4]  
[Anonymous], 1997, LANDSCAPE ECOLOGY FU
[5]   Simulating overland flow following wildfire: mapping vulnerability to landscape disturbance [J].
Beeson, PC ;
Martens, SN ;
Breshears, DD .
HYDROLOGICAL PROCESSES, 2001, 15 (15) :2917-2930
[6]   Linkages between microbial and hydrologic processes in arid and semiarid watersheds [J].
Belnap, J ;
Welter, JR ;
Grimm, NB ;
Barger, N ;
Ludwig, JA .
ECOLOGY, 2005, 86 (02) :298-307
[7]   A hierarchical view of the interactions of runoff and infiltration with vegetation and microtopography in semiarid shrublands [J].
Bergkamp, G .
CATENA, 1998, 33 (3-4) :201-220
[8]   Association between plant canopies and the spatial patterns of infiltration in shrubland and grassland of the Chihuahuan Desert, New Mexico [J].
Bhark, EW ;
Small, EE .
ECOSYSTEMS, 2003, 6 (02) :185-196
[9]   Wind and water erosion and transport in semi-arid shrubland, grassland and forest ecosystems: Quantifying dominance of horizontal wind-driven transport [J].
Breshears, DD ;
Whicker, JJ ;
Johansen, MP ;
Pinder, JE .
EARTH SURFACE PROCESSES AND LANDFORMS, 2003, 28 (11) :1189-1209
[10]   Effects of woody plants on microclimate in a semiarid woodland: Soil temperature and evaporation in canopy and intercanopy patches [J].
Breshears, DD ;
Nyhan, JW ;
Heil, CE ;
Wilcox, BP .
INTERNATIONAL JOURNAL OF PLANT SCIENCES, 1998, 159 (06) :1010-1017