Solution and interfacial behavior of hydrophobically modified water-soluble block copolymers of acrylamide and N-phenethylacrylamide

被引:26
作者
Abu-Sharkh, BF [1 ]
Yahaya, GO
Ali, SA
Kazi, IW
机构
[1] King Fahd Univ Petr & Minerals, Dept Chem Engn, Dhahran 31261, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Dept Chem, Dhahran 31261, Saudi Arabia
关键词
acrylamide block copolymers; micellar copolymerization; hydrophobically associating polymers; water-soluble polymers; solution viscosity; surface and interfacial tensions;
D O I
10.1002/app.1873
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Hydrophobically modified water-soluble block copolymers were prepared by aqueous micellar copolymerization of acrylamide and small amounts (2 and 3 mol %) of a hydrophobe (N-phenethylacrylamide) that is characterized by a long spacer that places the aromatic ring far away from the backbone, with the objective of investigating the copolymers' rheological behavior and surface and interfacial activities under various conditions such as polymer concentration, shear rate, temperature, and salinity. As expected, the block copolymers exhibit improved thickening properties attributed to intermolecular hydrophobic associations as the solution viscosity of the copolymers increases sharply with increasing polymer concentration. Additional evidence for intermolecular association is provided by the effect of NaCl, the presence of which substantially enhances the viscosity. An almost shear rate-independent viscosity (Newtonian plateau) is also exhibited at high shear rate and a typical non-Newtonian shear thinning behavior appears at low shear rates and high temperatures. Furthermore, the block copolymers exhibit high air-liquid surface and liquid-liquid interfacial activities as the surface and interfacial tensions decrease with increasing polymer concentration, indicating strong adsorption of the copolymer at the interface. The surface and interfacial tensions exhibited by the copolymers were found to be relatively insensitive to the concentration of salt (NaCl). (C) 2001 John Wiley & Sons, Inc.
引用
收藏
页码:467 / 476
页数:10
相关论文
共 30 条
[1]  
ANTON P, 1993, MAKROMOL CHEM, V194, P1
[2]   COPOLYMERIZATION OF ACRYLAMIDE AND A HYDROPHOBIC MONOMER IN AN AQUEOUS MICELLAR MEDIUM - EFFECT OF THE SURFACTANT ON THE COPOLYMER MICROSTRUCTURE [J].
BIGGS, S ;
HILL, A ;
SELB, J ;
CANDAU, F .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (03) :1505-1511
[3]  
BOCK J, 1984, Patent No. 115213
[4]   Synthesis, characterization and micelle formation of amphiphilic graft copolymers [J].
Carrot, G ;
Hilborn, J ;
Knauss, DM .
POLYMER, 1997, 38 (26) :6401-6407
[5]   Novel approach for the synthesis of hydrophobe modified polyacrylamide.: Direct N-alkylation of polyacrylamide in dimethyl sulfoxide [J].
Deguchi, S ;
Lindman, B .
POLYMER, 1999, 40 (25) :7163-7165
[6]   A NOVEL MICELLAR SYNTHESIS AND PHOTOPHYSICAL CHARACTERIZATION OF WATER-SOLUBLE ACRYLAMIDE STYRENE BLOCK COPOLYMERS [J].
DOWLING, KC ;
THOMAS, JK .
MACROMOLECULES, 1990, 23 (04) :1059-1064
[7]  
EVANI S, 1982, Patent No. 57875
[8]  
Evani S, 1984, U.S. Pat, Patent No. 4432881
[9]  
Guo L, 1998, MACROMOL CHEM PHYS, V199, P1175
[10]   PROPERTIES OF HYDROPHOBICALLY ASSOCIATING POLYACRYLAMIDES - INFLUENCE OF THE METHOD OF SYNTHESIS [J].
HILL, A ;
CANDAU, F ;
SELB, J .
MACROMOLECULES, 1993, 26 (17) :4521-4532