Increased adenosine monophosphate-activated protein kinase activity in rat hearts with pressure-overload hypertrophy

被引:249
作者
Tian, R
Musi, N
D'Agostino, J
Hirshman, MF
Goodyear, LJ
机构
[1] NMR Lab Physiol Chem, Div Cardiovasc Med, Boston, MA 02115 USA
[2] Brigham & Womens Hosp, Dept Med, Joslin Diabet Ctr, Div Res, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Boston, MA 02115 USA
关键词
hypertrophy; muscles; proteins; glucose; myocardium; metabolism;
D O I
10.1161/hc4001.097183
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background-Recent reports suggest that activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK), in response to acute changes in cellular energy status in cardiac and skeletal muscles, results in altered substrate utilization. We hypothesized that chronic alterations in myocardial energetics in hypertrophied hearts (left ventricular hypertrophy, LVH) will lead to elevated AMPK activity, which in turn regulates substrate utilization. Methods and Results-Using P-31 NMR spectroscopy and biochemical assays, we found that in LVH hearts, adenosine triphosphate (ATP) concentration decreased by 10%, phosphocreatine concentration decreased by 30%, and total creatine concentration was unchanged. Thus, the ratio of phosphocreatine/creatine decreased to one third of controls, and the ratio of AMP/ATP increased to 5 times above controls. These changes were associated with increased alpha (1) and alpha (2) AMPK activity (3.5- and 4.8-fold above controls, respectively). The increase in AMPK a, activity was accompanied by a 2-fold increase in alpha (1) expression, whereas a2 expression was decreased by 30% in LVH. The basal rate of 2-deoxyglucose uptake increased by 3-fold in LVH, which was associated with an increased amount of glucose transporters present on the plasma membrane. Conclusions-These results demonstrate for the first time that chronic changes in myocardial energetics in hypertrophied hearts are accompanied by significant elevations in AMPK activity and isoform-specific alterations in AMPK expression. It also raises the possibility that AMPK signaling plays an important role in regulating substrate utilization in hypertrophied hearts.
引用
收藏
页码:1664 / 1669
页数:6
相关论文
共 30 条
[1]   Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart [J].
Abel, ED ;
Kaulbach, HC ;
Tian, R ;
Hopkins, JCA ;
Duffy, J ;
Doetschman, T ;
Minnemann, T ;
Boers, ME ;
Hadro, E ;
Oberste-Berghaus, C ;
Quist, W ;
Lowell, BB ;
Ingwall, JS ;
Kahn, BB .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (12) :1703-1714
[2]   CONTRIBUTION OF OXIDATIVE-METABOLISM AND GLYCOLYSIS TO ATP PRODUCTION IN HYPERTROPHIED HEARTS [J].
ALLARD, MF ;
SCHONEKESS, BO ;
HENNING, SL ;
ENGLISH, DR ;
LOPASCHUK, GD .
AMERICAN JOURNAL OF PHYSIOLOGY, 1994, 267 (02) :H742-H750
[3]   Effect of AMPK activation on muscle glucose metabolism in conscious rats [J].
Bergeron, R ;
Russell, RR ;
Young, LH ;
Ren, JM ;
Marcucci, M ;
Lee, A ;
Shulman, GI .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 1999, 276 (05) :E938-E944
[4]   ISOLATION AND CHARACTERIZATION OF CARDIAC SARCOLEMMA [J].
BERS, DM .
BIOCHIMICA ET BIOPHYSICA ACTA, 1979, 555 (01) :131-146
[5]   Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy [J].
Depre, C ;
Shipley, GL ;
Chen, WH ;
Han, QY ;
Doenst, T ;
Moore, ML ;
Stepkowski, S ;
Davies, PJA ;
Taegtmeyer, H .
NATURE MEDICINE, 1998, 4 (11) :1269-1275
[6]   Exercise induces isoform-specific increase in 5′AMP-activated protein kinase activity in human skeletal muscle [J].
Fujii, N ;
Hayashi, T ;
Hirshman, MF ;
Smith, JT ;
Habinowski, SA ;
Kaijser, L ;
Mu, J ;
Ljungqvist, O ;
Birnbaum, MJ ;
Witters, LA ;
Thorell, A ;
Goodyear, LJ .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2000, 273 (03) :1150-1155
[7]   The AMP-activated protein kinase - Fuel gauge of the mammalian cell? [J].
Hardie, DG ;
Carling, D .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1997, 246 (02) :259-273
[8]   5'-AMP ACTIVATES THE AMP-ACTIVATED PROTEIN-KINASE CASCADE AND CA2+/CALMODULIN ACTIVATES THE CALMODULIN-DEPENDENT PROTEIN-KINASE-I CASCADE, VIA 3 INDEPENDENT MECHANISMS [J].
HAWLEY, SA ;
SELBERT, MA ;
GOLDSTEIN, EG ;
EDELMAN, AM ;
CARLING, D ;
HARDIE, DG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (45) :27186-27191
[9]   Metabolic stress and altered glucose transport - Activation of AMP-activated protein kinase as a unifying coupling mechanism [J].
Hayashi, T ;
Hirshman, MF ;
Fujii, N ;
Habinowski, SA ;
Witters, LA ;
Goodyear, LJ .
DIABETES, 2000, 49 (04) :527-531
[10]   Evidence for 5′AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport [J].
Hayashi, T ;
Hirshman, MF ;
Kurth, EJ ;
Winder, WW ;
Goodyear, LJ .
DIABETES, 1998, 47 (08) :1369-1373