Improved electrochemical performance of Fe2O3 nanoparticles confined in carbon nanotubes

被引:142
作者
Yu, Wan-Jing [1 ]
Hou, Peng-Xiang [1 ]
Li, Feng [1 ]
Liu, Chang [1 ]
机构
[1] Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res, Shenyang 110016, Peoples R China
基金
中国国家自然科学基金;
关键词
LITHIUM-ION BATTERIES; ANODE MATERIALS; ENERGY-STORAGE; ALPHA-FE2O3; IRON; INTERCALATION; MAGHEMITE; INSERTION; ELECTRODE; GRAPHITE;
D O I
10.1039/c2jm31442h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A hybrid material of carbon nanotube (CNT)-encapsulated Fe2O3 nanoparticles was prepared by immersing CNTs with two open ends in a Fe(NO3)(3) solution followed by thermal decomposition. It was found that the hollow core of the CNTs was filled with a homogeneous array of Fe2O3 nanoparticles with each nanoparticle being a single crystal. As an anode material of lithium-ion batteries, the Fe2O3-filled CNTs exhibited an improved electrochemical performance in terms of high reversible capacity, excellent cycling stability (811.4 mA h g(-1) after 100 cycles), and high rate capability, compared to that of pure Fe2O3. We attribute this superior electrochemical performance of the Fe2O3-filled CNTs to the small size of the Fe2O3 nanoparticles, the confinement effect of CNTs, sound electrical contact between these two components, as well as the good electrical conductivity and unique porous structure of CNTs that improve the electron and lithium ion transport ability of the anode.
引用
收藏
页码:13756 / 13763
页数:8
相关论文
共 39 条
[1]   Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity [J].
Balaya, P ;
Li, H ;
Kienle, L ;
Maier, J .
ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (08) :621-625
[2]   The characterization of activated carbons with oxygen and nitrogen surface groups [J].
Biniak, S ;
Szymanski, G ;
Siedlewski, J ;
Swiatkowski, A .
CARBON, 1997, 35 (12) :1799-1810
[3]   Calorimetric study of maghemite nanoparticles synthesized by laser-induced pyrolysis [J].
Bomati-Miguel, Oscar ;
Mazeina, Lena ;
Navrotsky, Alexandra ;
Veintemillas-Verdaguer, Sabino .
CHEMISTRY OF MATERIALS, 2008, 20 (02) :591-598
[4]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[5]   Carbon nanotubule membranes for electrochemical energy storage and production [J].
Che, GL ;
Lakshmi, BB ;
Fisher, ER ;
Martin, CR .
NATURE, 1998, 393 (6683) :346-349
[6]   α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications [J].
Chen, J ;
Xu, LN ;
Li, WY ;
Gou, XL .
ADVANCED MATERIALS, 2005, 17 (05) :582-+
[7]   High-surface-area α-Fe2O3/carbon nanocomposite: one-step synthesis and its highly reversible and enhanced high-rate lithium storage properties [J].
Chou, Shu-Lei ;
Wang, Jia-Zhao ;
Wexler, David ;
Konstantinov, Konstantin ;
Zhong, Chao ;
Liu, Hua-Kun ;
Dou, Shi-Xue .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (11) :2092-2098
[8]   MECHANISMS FOR LITHIUM INSERTION IN CARBONACEOUS MATERIALS [J].
DAHN, JR ;
ZHENG, T ;
LIU, YH ;
XUE, JS .
SCIENCE, 1995, 270 (5236) :590-593
[9]  
deFaria DLA, 1997, J RAMAN SPECTROSC, V28, P873, DOI 10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO
[10]  
2-B