Dynamic clustering of evolving streams with a single

被引:19
作者
Yang, J [1 ]
机构
[1] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
来源
19TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, PROCEEDINGS | 2003年
关键词
D O I
10.1109/ICDE.2003.1260838
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Stream data is common in many applications, e.g., stock quotes, merchandize sales record, system logs, etc.. It is of great importance to analyze these stream data. As one of the most commonly used techniques, clustering on streams can help to detect and monitor correlations among streams. Due to the unique nature of streaming data, direct application of most existing clustering algorithms fails to deliver efficient results. In this project, we introduce a novel model of stream cluster which employs a weighted distance measure. In addition, we device a novel efficient algorithm which can effectively discover all stream clusters.
引用
收藏
页码:695 / 697
页数:3
相关论文
共 15 条
[1]  
[Anonymous], 1999, P KDD, DOI [10.1145/312129.312195, DOI 10.1016/J.EC0LENG.2010.11.031]
[2]  
DOBRA A, 2002, P 2002 ACM SIGMOD IN, P61, DOI DOI 10.1145/564696.564699
[3]  
Domingos P., 2000, Proceedings. KDD-2000. Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P71, DOI 10.1145/347090.347107
[4]  
FEIGENBAUM J, 1999, P IEEE S FOCS
[5]  
FEIGENBAUM J, 1999, P ACM SIAM S DISC AL
[6]  
FONG J, 2000, P STACS
[7]  
Ganti V., 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073), P439, DOI 10.1109/ICDE.2000.839443
[8]  
Gehrke J, 2001, SIGMOD REC, V30, P13, DOI 10.1145/376284.375665
[9]   Clustering data streams [J].
Guha, S ;
Mishra, N ;
Motwani, R ;
O'Callaghan, L .
41ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2000, :359-366
[10]  
HENZINGER MR, 1998, 1998011 DIG SYST RES