Weather modelling using a multivariate latent Gaussian model

被引:17
作者
Durban, M [1 ]
Glasbey, CA [1 ]
机构
[1] JCMB, Biomath & Stat Scotland, Edinburgh EH9 3JZ, Midlothian, Scotland
关键词
auto-correlation; likelihood; rainfall; simulation; vector auto-regressive moving average process;
D O I
10.1016/S0168-1923(01)00268-4
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
We propose a vector auto-regressive moving average process as a model for daily weather data. For the rainfall variable a monotonic transformation is applied to achieve marginal normality, thus, defining a latent variable, with zero rainfall data corresponding to censored values below a threshold. Methodology is presented for model identification, estimation and validation, illustrated using data from Mylnefield, Scotland. The new model, a vector second-order auto-regressive first-order moving average (VARMA(2,1)) process, fits the data better, and produces more realistic simulated series than, existing models of Richardson [Water Resources Res. 17 (1981) 182] and Peiris and McNicol [Agric. Forest Meteorol. 79 (1996) 219]. (C) 2001 Elsevier Science BY. All rights reserved.
引用
收藏
页码:187 / 201
页数:15
相关论文
共 16 条