Lithium-Assisted Electrochemical Welding in Silicon Nanowire Battery Electrodes

被引:106
作者
Karki, Khim [2 ]
Epstein, Eric [2 ]
Cho, Jeong-Hyun [3 ]
Jia, Zheng [4 ]
Li, Teng [4 ]
Picraux, S. Tom [3 ]
Wang, Chunsheng [1 ]
Cumings, John [2 ]
机构
[1] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[3] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
[4] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Silicon nanowires; welding; self-healing; interfacial lithium diffusivity; in situ TEM; lithium-ion battery; IN-SITU MEASUREMENTS; ANODE MATERIAL; ALLOY ANODE; THIN-FILMS; ION; INSERTION; FRACTURE; PERFORMANCE; EXTRACTION; CAPACITY;
D O I
10.1021/nl204063u
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
From in situ transmission electron microscopy (TEM) observations, we present direct evidence of lithium-assisted welding between physically contacted silicon nanowires (SiNWs) induced by electrochemical lithiation and delithiation. This electrochemical weld between two SiNWs demonstrates facile transport of lithium ions and electrons across the interface. From our in situ observations, we estimate the shear strength of the welded region after delithiation to be approximately 200 MPa, indicating that a strong bond is formed at the junction of two SiNWs. This welding phenomenon could help address the issue of capacity fade in nanostructured silicon battery electrodes, which is typically caused by fracture and detachment of active materials from the current collector. The process could provide for more robust battery performance either through self-healing components that remain in contact or through the formation of a multiconnected network architecture.
引用
收藏
页码:1392 / 1397
页数:6
相关论文
共 40 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   Odd electron diffraction patterns in silicon nanowires and silicon thin films explained by microtwins and nanotwins [J].
Cayron, Cyril ;
Den Hertog, Martien ;
Latu-Romain, Laurence ;
Mouchet, Celine ;
Secouard, Christopher ;
Rouviere, Jean-Luc ;
Rouviere, Emmanuelle ;
Simonato, Jean-Pierre .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2009, 42 :242-252
[3]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[4]   Analysis of Lithium Insertion/Deinsertion in a Silicon Electrode Particle at Room Temperature [J].
Chandrasekaran, Rajeswari ;
Magasinski, Alexandre ;
Yushin, Gleb ;
Fuller, Thomas F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (10) :A1139-A1151
[5]   Stress generation and fracture in lithium insertion materials [J].
Christensen, J ;
Newman, J .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2006, 10 (05) :293-319
[6]   On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium [J].
Courtney, IA ;
McKinnon, WR ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (01) :59-68
[7]   Growth, Defect Formation, and Morphology Control of Germanium-Silicon Semiconductor Nanowire Heterostructures [J].
Dayeh, Shadi A. ;
Wang, Jian ;
Li, Nan ;
Huang, Jian Yu ;
Gin, Aaron V. ;
Picraux, S. Thomas .
NANO LETTERS, 2011, 11 (10) :4200-4206
[8]   Strain Anisotropies and Self-Limiting Capacities in Single-Crystalline 3D Silicon Microstructures: Models for High Energy Density Lithium-Ion Battery Anodes [J].
Goldman, Jason L. ;
Long, Brandon R. ;
Gewirth, Andrew A. ;
Nuzzo, Ralph G. .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (13) :2412-2422
[9]   Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries [J].
Guo, Bingkun ;
Shu, Jie ;
Wang, Zhaoxiang ;
Yang, Hong ;
Shi, Lihong ;
Liu, Yinong ;
Chen, Liquan .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (12) :1876-1878
[10]   A study of lithium ion intercalation induced fracture of silicon particles used as anode material in Li-ion battery [J].
Kalnaus, S. ;
Rhodes, K. ;
Daniel, C. .
JOURNAL OF POWER SOURCES, 2011, 196 (19) :8116-8124