Kinematics of the Secondary Eyewall Observed in Hurricane Rita (2005)

被引:55
作者
Didlake, Anthony C., Jr. [1 ]
Houze, Robert A., Jr. [1 ]
机构
[1] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
VORTEX ROSSBY-WAVES; DOPPLER RADAR OBSERVATIONS; VERTICAL WIND SHEAR; TROPICAL CYCLONES; POTENTIAL INTENSITY; EVOLUTION; CONVECTION; VORTICITY; RAINBAND; MOTION;
D O I
10.1175/2011JAS3715.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Airborne Doppler radar data collected from the concentric eyewalls of Hurricane Rita (2005) provide detailed three-dimensional kinematic observations of the secondary eyewall feature. The secondary eyewall radar echo shows a ring of heavy precipitation containing embedded convective cells, which have no consistent orientation or radial location. The axisymmetric mean structure has a tangential wind maximum within the reflectivity maximum at 2-km altitude and an elevated distribution of its strongest winds on the radially outer edge. The corresponding vertical vorticity field contains a low-level maximum on the inside edge, which is part of a tube of increased vorticity that rises through the center of the reflectivity tower and into the midlevels. The secondary circulation consists of boundary layer inflow that radially overshoots the secondary eyewall. A portion of this inflowing air experiences convergence and supergradient forces that cause the air to rise and flow radially outward back into the center of the reflectivity tower. This mean updraft stretches and tilts the vorticity field to increase vorticity on the radially inner side of the tangential wind maximum. Radially outside this region, perturbation motions decrease the vorticity at a comparable rate. Thus, both mean and perturbation motions actively strengthen the wind maximum of the secondary eyewall. These features combine to give the secondary eyewall a structure different from the primary eyewall as it builds to become the new replacement eyewall.
引用
收藏
页码:1620 / 1636
页数:17
相关论文
共 56 条
[1]   Observed structure, evolution, and potential intensity of category 5 Hurricane Isabel (2003) from 12 to 14 September [J].
Bell, Michael M. ;
Montgomery, Michael T. .
MONTHLY WEATHER REVIEW, 2008, 136 (06) :2023-2046
[2]  
Black ML, 2002, MON WEATHER REV, V130, P2291, DOI 10.1175/1520-0493(2002)130<2291:EPHJOA>2.0.CO
[3]  
2
[4]  
BLACK ML, 1992, MON WEATHER REV, V120, P947, DOI 10.1175/1520-0493(1992)120<0947:TCECOH>2.0.CO
[5]  
2
[6]  
Black ML, 1996, J ATMOS SCI, V53, P1887, DOI 10.1175/1520-0469(1996)053<1887:VMCOTC>2.0.CO
[7]  
2
[8]   Procedures to improve the accuracy of airborne Doppler radar data [J].
Bosart, BL ;
Lee, WC ;
Wakimoto, RM .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2002, 19 (03) :322-339
[9]   High-resolution simulation of Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion [J].
Braun, SA ;
Montgomery, MT ;
Pu, ZX .
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2006, 63 (01) :19-42
[10]   Evaluation of an Analytical Model for the Maximum Intensity of Tropical Cyclones [J].
Bryan, George H. ;
Rotunno, Richard .
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2009, 66 (10) :3042-3060