Keyhole coherent diffractive imaging

被引:265
作者
Abbey, Brian [1 ]
Nugent, Keith A. [1 ]
Williams, Garth J. [1 ]
Clark, Jesse N. [2 ]
Peele, Andrew G. [2 ]
Pfeifer, Mark A. [2 ]
De Jonge, Martin [3 ]
McNulty, Ian [3 ]
机构
[1] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia
[2] La Trobe Univ, Dept Phys, Bundoora, Vic 3086, Australia
[3] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
基金
澳大利亚研究理事会;
关键词
D O I
10.1038/nphys896
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The availability of third-generation synchrotrons and ultimately X-ray free-electron lasers(1) is driving the development of many new methods of microscopy. Among these techniques, coherent diffractive imaging (CDI) is one of the most promising, offering nanometre-scale imaging of non-crystallographic samples. Image reconstruction from a single diffraction pattern has hitherto been possible only for small, isolated samples, presenting a fundamental limitation on the CDI method. Here we report on a form of imaging we term 'keyhole' CDI, which can reconstruct objects of arbitrary size. We demonstrate the technique using visible light and X-rays, with the latter producing images of part of an extended object with a detector-limited resolution of better than 20 nm. Combining the improved resolution of modern X-ray optics with the wavelength-limited resolution of CDI, the method paves the way for detailed imaging of a single quantum dot or of a small virus within a complex host environment.
引用
收藏
页码:394 / 398
页数:5
相关论文
共 19 条
[1]  
BATES RHT, 1982, OPTIK, V61, P247
[2]   Femtosecond diffractive imaging with a soft-X-ray free-electron laser [J].
Chapman, Henry N. ;
Barty, Anton ;
Bogan, Michael J. ;
Boutet, Sebastien ;
Frank, Matthias ;
Hau-Riege, Stefan P. ;
Marchesini, Stefano ;
Woods, Bruce W. ;
Bajt, Sasa ;
Benner, Henry ;
London, Richard A. ;
Ploenjes, Elke ;
Kuhlmann, Marion ;
Treusch, Rolf ;
Duesterer, Stefan ;
Tschentscher, Thomas ;
Schneider, Jochen R. ;
Spiller, Eberhard ;
Moeller, Thomas ;
Bostedt, Christoph ;
Hoener, Matthias ;
Shapiro, David A. ;
Hodgson, Keith O. ;
Van der Spoel, David ;
Burmeister, Florian ;
Bergh, Magnus ;
Caleman, Carl ;
Huldt, Goesta ;
Seibert, M. Marvin ;
Maia, Filipe R. N. C. ;
Lee, Richard W. ;
Szoeke, Abraham ;
Timneanu, Nicusor ;
Hajdu, Janos .
NATURE PHYSICS, 2006, 2 (12) :839-843
[3]   PHASE RETRIEVAL ALGORITHMS - A COMPARISON [J].
FIENUP, JR .
APPLIED OPTICS, 1982, 21 (15) :2758-2769
[5]   X-ray image reconstruction from a diffraction pattern alone [J].
Marchesini, S ;
He, H ;
Chapman, HN ;
Hau-Riege, SP ;
Noy, A ;
Howells, MR ;
Weierstall, U ;
Spence, JCH .
PHYSICAL REVIEW B, 2003, 68 (14)
[6]  
Mcnulty I, 1996, REV SCI INSTRUM, V67, P3372, DOI DOI 10.1063/1.1147339
[7]   Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects [J].
Miao, J ;
Sayre, D ;
Chapman, HN .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1998, 15 (06) :1662-1669
[8]   Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens [J].
Miao, JW ;
Charalambous, P ;
Kirz, J ;
Sayre, D .
NATURE, 1999, 400 (6742) :342-344
[9]   Three-dimensional mapping of a deformation field inside a nanocrystal [J].
Pfeifer, Mark A. ;
Williams, Garth J. ;
Vartanyants, Ivan A. ;
Harder, Ross ;
Robinson, Ian K. .
NATURE, 2006, 442 (7098) :63-66
[10]   Fresnel transform phase retrieval from magnitude [J].
Pitts, TA ;
Greenleaf, JF .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2003, 50 (08) :1035-1045