Sylvester equations and projection-based model reduction

被引:103
作者
Gallivan, K
Vandendorpe, A
Van Dooren, P
机构
[1] Univ Catholique Louvain, CESAME, B-1348 Louvain, Belgium
[2] Florida State Univ, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
model reduction; time-invariant linear systems; large-scale system; rational interpolation; multipoint Pade;
D O I
10.1016/j.cam.2003.08.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish a connection between Krylov subspace techniques for Multipoint Pade interpolation, and the use of Sylvester equations for constructing reduced-order models. We also briefly point out that this connection partly extends to ADI-type techniques and to the Smith iteration for computing approximate solutions of Lyapunov equations. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:213 / 229
页数:17
相关论文
共 12 条
[1]   On the decay rate of Hankel singular values and related issues [J].
Antoulas, AC ;
Sorensen, DC ;
Zhou, Y .
SYSTEMS & CONTROL LETTERS, 2002, 46 (05) :323-342
[2]  
ANTOULAS AC, 2001, 0101 RIC U DEP COMP
[3]  
ANTOULAS AC, 2001, 0110 RIC U DEP COMP
[4]  
Ball J.A., 1990, Interpolation of Rational Matrix Functions
[5]  
Gallivan KA, 1999, NATO ADV SCI I C-MAT, V536, P177
[6]  
Gantmacher F. R., 1959, THEORY MATRICES, V2
[7]  
Grimme E. J., 1997, Krylov projection methods for model reduction
[8]  
Li JR, 2000, Model reduction of large linear systems via low rank system Gramians
[10]   A cyclic low-rank smith method for large sparse Lyapunov equations [J].
Penzl, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (04) :1401-1418