The alteration of a mechanical property of bone cells during the process of changing from osteoblasts to osteocytes

被引:50
作者
Sugawara, Yasuyo [1 ]
Ando, Ryoko [1 ]
Kamioka, Hiroshi [1 ]
Ishihara, Yoshihito [1 ]
Murshid, Sakhr A. [4 ]
Hashimoto, Ken [2 ]
Kataoka, Noriyuki [3 ]
Tsujioka, Katsuhiko [2 ]
Kajiya, Fumihiko [3 ]
Yamashiro, Takashi [1 ]
Takano-Yarnamoto, Teruko [4 ]
机构
[1] Okayama Univ, Sch Med Dent & Pharmaceut Sci, Dept Orthodont & Dentofacial Orthoped, Okayama 7008525, Japan
[2] Kawasaki Med Sch, Dept Physiol, Kurashiki, Okayama 7010192, Japan
[3] Kawasaki Med Sch, Dept Med Engn, Kurashiki, Okayama 7010192, Japan
[4] Tohoku Univ, Grad Sch Dent, Div Orthodont & Dentofacial Orthoped, Aoba Ku, Sendai, Miyagi 9808574, Japan
关键词
osteoblasts; osteoid osteocytes; mature osteocytes; elastic modulus; focal adhesion;
D O I
10.1016/j.bone.2008.02.020
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Osteocytes acquire their stellate shape during the process of changing from osteoblasts in bone. Throughout this process, dynamic cytoskeletal changes occur. In general, changes of the cytoskeleton affect cellular mechanical properties. Mechanical properties of living cells are connected with their biological functions and physiological processes. In this study, we for the first time analyzed elastic modulus, a mechanical property of bone cells. Bone cells in embryonic chick calvariae and in isolated culture were identified using fluorescently labeled phalloidin and OB7.3, a chick osteocyte-specific monoclonal antibody, and then observed by confocal laser scanning microscopy. The elastic modulus of living cells was analyzed with atomic force microscopy. To examine, the consequences of focal adhesion formation on the elastic modulus, cells were pretreated with GRGDS and GRGES, and then the elastic modulus of the cells was analyzed. Focal adhesions in the cells were visualized by immunofluorescence of vinculin. From fluorescence images, we could distinguish osteoblasts, osteoid osteocytes and mature osteocytes both in vivo and in vitro. The elastic modulus of peripheral regions of cells in all three populations was significantly higher than in their nuclear regions. The elastic modulus of the peripheral region of osteoblasts was 12053 +/- 934 Pa, that of osteoid osteocytes was 7971 +/- 422 Pa and that of mature osteocytes was 4471 +/- 198 Pa. These results suggest that the level of elastic modulus of bone cells was proportional to the stage of changing from osteoblasts to osteocytes. The focal adhesion area of osteoblasts was significantly higher than that of osteocytes. The focal adhesion area of osteoblasts was decreased after treatment with GRGDS, however, that of osteocytes was not. The elastic modulus of osteoblasts and osteoid osteocytes were decreased after treatment with GRGDS. However, that of mature osteocytes was not changed. There were dynamic changes in the mechanical property of elastic modulus and in focal adhesions of bone cells. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:19 / 24
页数:6
相关论文
共 36 条
[1]  
BORDIER MP, 1976, BONE HISTOMORPHOMETR, P335
[2]  
Bottomley LA, 1996, ANAL CHEM, V68, pR185, DOI 10.1021/a1960008+
[3]   Focal adhesions, contractility, and signaling [J].
Burridge, K ;
ChrzanowskaWodnicka, M .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1996, 12 :463-518
[4]   FLOW-MEDIATED ENDOTHELIAL MECHANOTRANSDUCTION [J].
DAVIES, PF .
PHYSIOLOGICAL REVIEWS, 1995, 75 (03) :519-560
[5]   QUANTITATIVE STUDIES OF ENDOTHELIAL-CELL ADHESION - DIRECTIONAL REMODELING OF FOCAL ADHESION SITES IN RESPONSE TO FLOW FORCES [J].
DAVIES, PF ;
ROBOTEWSKYJ, A ;
GRIEM, ML .
JOURNAL OF CLINICAL INVESTIGATION, 1994, 93 (05) :2031-2038
[6]   Buried alive: How osteoblasts become osteocytes [J].
Franz-Odendaal, TA ;
Hall, BK ;
Witten, PE .
DEVELOPMENTAL DYNAMICS, 2006, 235 (01) :176-190
[7]   Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton [J].
Haga, H ;
Sasaki, S ;
Kawabata, K ;
Ito, E ;
Ushiki, T ;
Sambongi, T .
ULTRAMICROSCOPY, 2000, 82 (1-4) :253-258
[8]  
INGBER DE, 1994, INT REV CYTOL, V150, P173
[9]  
INGBER DE, 1993, J CELL SCI, V104, P613
[10]   Tensegrity I. Cell structure and hierarchical systems biology [J].
Ingber, DE .
JOURNAL OF CELL SCIENCE, 2003, 116 (07) :1157-1173