Improving the Li-Electrochemical Properties of Monodisperse Ni2P Nanoparticles by Self-Generated Carbon Coating

被引:85
作者
Carenco, S. [1 ]
Surcin, C. [2 ]
Morcrette, M. [2 ]
Larcher, D. [2 ]
Mezailles, N. [3 ]
Boissiere, C. [1 ]
Sanchez, C. [1 ]
机构
[1] Univ Paris 06, CNRS UMR 7574, Lab Chim Matiere Condensee, Coll France, F-75005 Paris, France
[2] Univ Picardie Jules Verne, CNRS UMR6007, Lab Reactivite & Chim Solides, F-80039 Amiens, France
[3] Ecole Polytech, CNRS UMR7653, Lab Heteroelements & Coordinat, F-91128 Palaiseau, France
关键词
carbon coating; nickel phosphide nanoparticles; electrochemical properties; negative electrode; nanostructured electrode; ligand decomposition; self-generated carbon shell; LITHIUM-ION BATTERIES; NICKEL PHOSPHIDE; METAL PHOSPHIDE; RECHARGEABLE BATTERIES; ANODE MATERIAL; NEGATIVE ELECTRODES; PERFORMANCE; STORAGE; NANOCOMPOSITE; FABRICATION;
D O I
10.1021/cm203164a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon coating of electrode materials is nowadays a major tool to improve the electronic percolation of the electrode. In this study, a self-generated carbon coating is described as a new way to deposit a regular thin layer of carbon on the surface of nanopartides. It relies on the soft decomposition of the nanopartides surface native ligands, containing alkyl chains, under inert atmosphere at 400 degrees C, a route particularly suited for oxidation-sensitive nanoparticles. Using 25 nm monodispersed Ni2P nanoparticles as a model phase, we succeeded in forming nonsintered and nonoxidized carbon-coated nanopartides. The carbon coating is then tuned in thickness by modifying the ligands set. Electrochemical properties of the resulting Ni2P/C nanoparticles vs Li are compared with those of bulk Ni2P. Both materials are shown to undergo a conversion reaction. The capacity of the bulk material collapses after a few cycles while Ni2P/C nanoparticles show much better retention. The self-generated carbon coating is thus found to promote Li uptake by providing a Li-permeable electron-conductive percolating network and by improving the mechanical integrity of the electrode.
引用
收藏
页码:688 / 697
页数:10
相关论文
共 62 条
[1]  
[Anonymous], NIST XPS DAT
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Phase-Selective Synthesis of Nickel Phosphide in High-Boiling Solvent for All-Solid-State Lithium Secondary Batteries [J].
Aso, Keigo ;
Hayashi, Akitoshi ;
Tatsumisago, Masahiro .
INORGANIC CHEMISTRY, 2011, 50 (21) :10820-10824
[4]  
Bernardi J., 2008, THESIS U MONTPELLIER
[5]   Electrochemical lithium insertion in Zn3P2 zinc phosphide [J].
Bichat, Marie-Pierre ;
Pascal, Jean-Louis ;
Gillot, Frederic ;
Favier, Frederic .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2006, 67 (5-6) :1233-1237
[6]   Nanostructured transition metal phosphide as negative electrode for lithium-ion batteries [J].
Boyanov, S. ;
Annou, K. ;
Villevieille, C. ;
Pelosi, M. ;
Zitoun, D. ;
Monconduit, L. .
IONICS, 2008, 14 (03) :183-190
[7]   FeP: Another attractive anode for the Li-ion battery enlisting a reversible two-step insertion/conversion process [J].
Boyanov, S. ;
Bernardi, J. ;
Gillot, F. ;
Dupont, L. ;
Womes, M. ;
Tarascon, J. -M. ;
Monconduit, L. ;
Doublet, M. -L. .
CHEMISTRY OF MATERIALS, 2006, 18 (15) :3531-3538
[8]   Comparison of the Electrochemical Lithiation/Delitiation Mechanisms of FePx (x=1, 2, 4) Based Electrodes in Li-Ion Batteries [J].
Boyanov, S. ;
Zitoun, D. ;
Menetrier, M. ;
Jumas, J. C. ;
Womes, M. ;
Monconduit, L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (51) :21441-21452
[9]   P-Redox Mechanism at the Origin of the High Lithium Storage in NiP2-Based Batteries [J].
Boyanov, S. ;
Bernardi, J. ;
Bekaert, E. ;
Menetrier, M. ;
Doublet, M. -L. ;
Monconduit, L. .
CHEMISTRY OF MATERIALS, 2009, 21 (02) :298-308
[10]  
Boyanov S., 2008, THESIS U MONTPELLIER