Oxygen limitation in microfluidic biofuel cells

被引:26
作者
Bedekar, A. S. [1 ]
Feng, J. J. [1 ]
Krishnamoorthy, S. [1 ]
Lim, K. G. [2 ]
Palmore, G. T. R. [2 ]
Sundaram, S. [1 ]
机构
[1] CDF Res Corp, Huntsville, AL 35805 USA
[2] Brown Univ, Div Engn, Providence, RI 02912 USA
关键词
biofuel cell; glucose; laccase; mass transport limitations; microfluidics; simulation;
D O I
10.1080/00986440701569036
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Biofuel cells are devices that use biocatalysts ( enzymes or microbes) to convert biochemical energy directly into electrical energy. Microfluidic biofuel cells exploit the lack of active mixing at microscale dimensions to eliminate the use of proton exchange membranes that separate anolyte and catholyte streams. Simulation of this system, by solving the governing 3-D conservation equations ( flow, species transport), reveals that oxygen availability limits the performance of the cathode. An exponential decay in the availability of oxygen at the cathode is observed along the length of the microchannel, indicating that increasing the number of electrode pairs reduces the overall current density. This conclusion is consistent with experimental observations. Increasing electrolyte flow rates can reduce the mass transport limitations by decreasing the diffusion boundary-layer thickness, but disparity between the flow rates of the anolyte and catholyte can induce wastage of dissolved oxygen.
引用
收藏
页码:256 / 266
页数:11
相关论文
共 19 条
[1]   Oxygen transport in composite mediated biocathodes [J].
Barton, SC .
ELECTROCHIMICA ACTA, 2005, 50 (10) :2145-2153
[2]   Electroreduction of O2 to water on the "Wired" laccase cathode [J].
Barton, SC ;
Kim, HH ;
Binyamin, G ;
Zhang, YC ;
Heller, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (47) :11917-11921
[3]   A miniature biofuel cell [J].
Chen, T ;
Barton, SC ;
Binyamin, G ;
Gao, ZQ ;
Zhang, YC ;
Kim, HH ;
Heller, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (35) :8630-8631
[4]  
Chiao M, 2003, PROC IEEE MICR ELECT, P383
[5]   Microfluidic fuel cell based on laminar flow [J].
Choban, ER ;
Markoski, LJ ;
Wieckowski, A ;
Kenis, PJA .
JOURNAL OF POWER SOURCES, 2004, 128 (01) :54-60
[6]   Characterization of limiting factors in laminar flow-based membraneless microfuel cells [J].
Choban, ER ;
Waszczuk, P ;
Kenis, PJA .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (07) :A348-A352
[7]   An electrochemical approach to the studies of biological redox reactions and their applications to biosensors, bioreactors, and biofuel cells [J].
Ikeda, T ;
Kano, K .
JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2001, 92 (01) :9-18
[8]  
JUSTIN GA, 2004, ANN INT C IEEE ENG M, V4096
[9]   A non-compartmentalized glucose|O2 biofuel cell by bioengineered electrode surfaces [J].
Katz, E ;
Willner, I ;
Kotlyar, AB .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1999, 479 (01) :64-68
[10]  
LAM KB, 2003, P IEEE MICR EL MECH, V391