Alterations of Akt1 (PKBα) and p70S6K in transient focal ischemia

被引:70
作者
Janelidze, S [1 ]
Hu, BR
Siesjö, P
Siesjö, BK
机构
[1] Queens Med Ctr, Queens Neurosci Inst, Ctr Study Neurol Dis, Honolulu, HI 96813 USA
[2] Univ Lund Hosp, Dept Neurosurg, S-22185 Lund, Sweden
关键词
Akt1; kinase; middle cerebral artery occlusion; p70; S6; neuronal death; apoptosis;
D O I
10.1006/nbdi.2000.0325
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The serine-threonine kinase Akt1 promotes cell survival through inhibition of apoptosis. One of the potential downstream targets of Akt1 is p70 S6 kinase, p70(S6K), an enzyme implicated in the regulation of protein synthesis. In this study, we investigated the changes in total and phosphorylated levels of Akt1 and p70(S6K) during transient focal ischemia. Male Wistar rats were subjected to 2 h of middle cerebral artery occlusion followed by 1, 4, and 24 h of reperfusion. The expression of total and phosphorylated forms of Akt1 and p70(S6K) were examined by Western blot analysis. Phosphorylation of Akt1 on Ser473 transiently increased at 1 and 4 h of reperfusion, whereas phosphorylation of Akt1 on Thr308 was reduced during reperfusion. The levels of total Akt1 remained unchanged at 1 and 4 h of reperfusion, but decreased significantly at 24 h of reperfusion. Phosphorylation of p70S6K On Thr389 decreased at 1, 4, and 24 h of reperfusion, while the levels of total p70(S6K) protein remained unchanged at 1 and 4 h of reperfusion but decreased at 24 h of reperfusion. The results show that cell survival pathways, such as Akt1 and p70(S6K) signaling, are suppressed after transient focal ischemia, which may contribute to the development of neuronal cell death after an ischemic insult.,(C) 2001 Academic Press.
引用
收藏
页码:147 / 154
页数:8
相关论文
共 33 条
[1]   Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase [J].
Ahmed, NN ;
Grimes, HL ;
Bellacosa, A ;
Chan, TO ;
Tsichlis, PN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (08) :3627-3632
[2]   Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha [J].
Alessi, DR ;
James, SR ;
Downes, CP ;
Holmes, AB ;
Gaffney, PRJ ;
Reese, CB ;
Cohen, P .
CURRENT BIOLOGY, 1997, 7 (04) :261-269
[3]   Mechanism of activation of protein kinase B by insulin and IGF-1 [J].
Alessi, DR ;
Andjelkovic, M ;
Caudwell, B ;
Cron, P ;
Morrice, N ;
Cohen, P ;
Hemmings, BA .
EMBO JOURNAL, 1996, 15 (23) :6541-6551
[4]  
Andjelkovic M, 1999, MOL CELL BIOL, V19, P5061
[5]   RAT MIDDLE CEREBRAL-ARTERY OCCLUSION - EVALUATION OF THE MODEL AND DEVELOPMENT OF A NEUROLOGIC EXAMINATION [J].
BEDERSON, JB ;
PITTS, LH ;
TSUJI, M ;
NISHIMURA, MC ;
DAVIS, RL ;
BARTKOWSKI, H .
STROKE, 1986, 17 (03) :472-476
[6]   Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor [J].
Brunet, A ;
Bonni, A ;
Zigmond, MJ ;
Lin, MZ ;
Juo, P ;
Hu, LS ;
Anderson, MJ ;
Arden, KC ;
Blenis, J ;
Greenberg, ME .
CELL, 1999, 96 (06) :857-868
[7]   PROTEIN-KINASE-B (C-AKT) IN PHOSPHATIDYLINOSITOL-3-OH INASE SIGNAL-TRANSDUCTION [J].
BURGERING, BMT ;
COFFER, PJ .
NATURE, 1995, 376 (6541) :599-602
[8]   Regulation of cell death protease caspase-9 by phosphorylation [J].
Cardone, MH ;
Roy, N ;
Stennicke, HR ;
Salvesen, GS ;
Franke, TF ;
Stanbridge, E ;
Frisch, S ;
Reed, JC .
SCIENCE, 1998, 282 (5392) :1318-1321
[9]  
Coffer PJ, 1998, BIOCHEM J, V335, P1
[10]   Analysis of signal transduction pathways in human eosinophils activated by chemoattractants and the T-helper 2-derived cytokines interleukin-4 and interleukin-5 [J].
Coffer, PJ ;
Schweizer, RC ;
Dubois, GR ;
Maikoe, T ;
Lammers, JWJ ;
Koenderman, L .
BLOOD, 1998, 91 (07) :2547-2557