Sensitivity of the Aerosol Indirect Effect to Subgrid Variability in the Cloud Parameterization of the GFDL Atmosphere General Circulation Model AM3

被引:89
作者
Golaz, Jean-Christophe [1 ]
Salzmann, Marc [1 ,2 ]
Donner, Leo J. [1 ]
Horowitz, Larry W. [1 ]
Ming, Yi [1 ]
Zhao, Ming [1 ]
机构
[1] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA
[2] Princeton Univ, Atmospher & Ocean Sci Program, Princeton, NJ 08544 USA
关键词
LARGE-SCALE MODELS; PART I; SINGLE-COLUMN; LIQUID WATER; GLOBAL PRECIPITATION; MICROPHYSICS SCHEME; DROPLET ACTIVATION; STRATIFORM CLOUDS; SULFATE AEROSOLS; CLIMATE FEEDBACK;
D O I
10.1175/2010JCLI3945.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The recently developed GFDL Atmospheric Model version 3 (AM3), an atmospheric general circulation model (GCM), incorporates a prognostic treatment of cloud drop number to simulate the aerosol indirect effect. Since cloud drop activation depends on cloud-scale vertical velocities, which are not reproduced in present-day GCMs, additional assumptions on the subgrid variability are required to implement a local activation parameterization into a GCM. This paper describes the subgrid activation assumptions in AM3 and explores sensitivities by constructing alternate configurations. These alternate model configurations exhibit only small differences in their present-day climatology. However, the total anthropogenic radiative flux perturbation (RFP) between present-day and preindustrial conditions varies by +/- 50% from the reference, because of a large difference in the magnitude of the aerosol indirect effect. The spread in RFP does not originate directly from the subgrid assumptions but indirectly through the cloud retuning necessary to maintain a realistic radiation balance. In particular, the paper shows a linear correlation between the choice of autoconversion threshold radius and the RFP. Climate sensitivity changes only minimally between the reference and alternate configurations. If implemented in a fully coupled model, these alternate configurations would therefore likely produce substantially different warming from preindustrial to present day.
引用
收藏
页码:3145 / 3160
页数:16
相关论文
共 95 条
[1]   A parameterization of aerosol activation - 1. Single aerosol type [J].
Abdul-Razzak, H ;
Ghan, SJ ;
Rivera-Carpio, C .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D6) :6123-6131
[2]  
Adler RF, 2003, J HYDROMETEOROL, V4, P1147, DOI 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO
[3]  
2
[4]   The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations [J].
Anderson, JL ;
Balaji, V ;
Broccoli, AJ ;
Cooke, WF ;
Delworth, TL ;
Dixon, KW ;
Donner, LJ ;
Dunne, KA ;
Freidenreich, SM ;
Garner, ST ;
Gudgel, RG ;
Gordon, CT ;
Held, IM ;
Hemler, RS ;
Horowitz, LW ;
Klein, SA ;
Knutson, TR ;
Kushner, PJ ;
Langenhost, AR ;
Lau, NC ;
Liang, Z ;
Malyshev, SL ;
Milly, PCD ;
Nath, MJ ;
Ploshay, JJ ;
Ramaswamy, V ;
Schwarzkopf, MD ;
Shevliakova, E ;
Sirutis, JJ ;
Soden, BJ ;
Stern, WF ;
Thompson, LA ;
Wilson, RJ ;
Wittenberg, AT ;
Wyman, BL .
JOURNAL OF CLIMATE, 2004, 17 (24) :4641-4673
[5]  
[Anonymous], 1997, P WMO WORKSH MEAS CL
[6]  
[Anonymous], 1998, Microphysics of clouds and precipitation
[7]   Radiative sensitivities for cloud structural properties that are unresolved by conventional GCMs [J].
Barker, HW ;
Räisänen, P .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (612) :3103-3122
[8]   Neglect by GCMs of subgrid-scale horizontal variations in cloud-droplet effective radius:: A diagnostic radiative analysis [J].
Barker, HW ;
Räisänen, P .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2004, 130 (600) :1905-1920
[9]   THE SULFATE-CCN-CLOUD ALBEDO EFFECT - A SENSITIVITY STUDY WITH 2 GENERAL-CIRCULATION MODELS [J].
BOUCHER, O ;
LOHMANN, U .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 1995, 47 (03) :281-300
[10]  
Bretherton CS, 2004, MON WEATHER REV, V132, P864, DOI 10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO