R/S analysis in strange attractors

被引:14
作者
De la Fuente, IM [1 ]
Martinez, L
Aguirregabiria, JM
Veguillas, J
机构
[1] Univ Basque Country, Sch Med, Dept Cell Biol & Morphol Sci, Leioa 48940, Vizcaya, Spain
[2] Univ Basque Country, Sch Med, Dept Math, Leioa 48940, Vizcaya, Spain
[3] Univ Basque Country, Sch Med, Dept Theoret Phys, Leioa 48940, Vizcaya, Spain
[4] Univ Basque Country, Sch Med, Dept Phys Chem, Leioa 48940, Vizcaya, Spain
来源
FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE | 1998年 / 6卷 / 02期
关键词
D O I
10.1142/S0218348X98000110
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A method to estimate the persistent behavior from a chaotic time series is proposed. Persistency means that here each value depends to some extent on the previous values and not only on the recent ones. The data were analyzed by means of Hurst's rescaled range method, i.e., R/S analysis (which was introduced by Mandelbrot and Wallis). The relation of the Hurst exponent to the self-affine and self-similar fractal dimension is discussed.
引用
收藏
页码:95 / 100
页数:6
相关论文
共 17 条