Hypoxia modulates early events in T cell receptor-mediated activation in human T lymphocytes via Kv1.3 channels

被引:53
作者
Robbins, JR
Lee, SM
Filipovich, AH
Szigligeti, P
Neumeier, L
Petrovic, M
Conforti, L
机构
[1] Univ Cincinnati, Dept Internal Med, Cincinnati, OH 45267 USA
[2] Univ Cincinnati, Dept Mol & Cellular Physiol, Cincinnati, OH 45267 USA
[3] Cincinnati Childrens Hosp, Med Ctr, Div Hematol Oncol, Cincinnati, OH 45267 USA
[4] Xavier Univ, Dept Biol, Cincinnati, OH 45207 USA
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2005年 / 564卷 / 01期
关键词
D O I
10.1113/jphysiol.2004.081893
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
T lymphocytes are exposed to hypoxia during their development and when they migrate to hypoxic pathological sites. Although it has been shown that hypoxia inhibits Kv1.3 channels and proliferation in human T cells, the mechanisms by which hypoxia regulates T cell activation are not fully understood. Herein we test the hypothesis that hypoxic inhibition of Kv1.3 channels induces membrane depolarization, thus modulating the increase in cytoplasmic Ca2+ that occurs during activation. Hypoxia causes membrane depolarization in human CD3+ T cells, as measured by fluorescence-activated cell sorting (FACS) with the voltage-sensitive dye DiBAC(4)(3). Similar depolarization is produced by the selective Kv1.3 channel blockers ShK-Dap(22) and margatoxin. Furthermore, pre-exposure to such blockers prevents any further depolarization by hypoxia. Since membrane depolarization is unfavourable to the influx of Ca2+ through the CRAC channels (necessary to drive many events in T cell activation such as cytokine production and proliferation), the effect of hypoxia on T cell receptor-mediated increase in cytoplasmic Ca2+ was determined using fura-2. Hypoxia depresses the increase in Ca2+ induced by anti-CD3/CD28 antibodies in similar to 50% of lymphocytes. In the remaining cells, hypoxia either did not elicit any 21 change or produced a small increase in cytoplasmic Ca2+. Similar effects were observed in resting and pre-activated CD3+ cells and were mimicked by ShK-Dap22. These effects appear to be mediated solely by Kv1.3 channels, as we find no influence of hypoxia on IKCal and CRAC channels. Our findings indicate that hypoxia modulates Ca2+ homeostasis in T cells via Kv1.3 channel inhibition and membrane depolarization.
引用
收藏
页码:131 / 143
页数:13
相关论文
共 46 条
[1]   Plasma membrane depolarization without repolarization is an early molecular event in anti-Fas-induced apoptosis [J].
Bortner, CD ;
Gómez-Angelats, M ;
Cidlowski, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (06) :4304-4314
[2]   Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies [J].
Brown, JM .
MOLECULAR MEDICINE TODAY, 2000, 6 (04) :157-162
[3]   Molecular properties and physiological roles of ion channels in the immune system [J].
Cahalan, MD ;
Wulff, H ;
Chandy, KG .
JOURNAL OF CLINICAL IMMUNOLOGY, 2001, 21 (04) :235-252
[4]   Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions [J].
Caldwell, CC ;
Kojima, H ;
Lukashev, D ;
Armstrong, J ;
Farber, M ;
Apasov, SG ;
Sitkovsky, MV .
JOURNAL OF IMMUNOLOGY, 2001, 167 (11) :6140-6149
[5]   Suppression of the rat microglia Kv1.3 current by src-family tyrosine kinases and oxygen/glucose deprivation [J].
Cayabyab, FS ;
Khanna, R ;
Jones, OT ;
Schlichter, LC .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2000, 12 (06) :1949-1960
[6]   Hypoxia regulates expression and activity of Kv1.3 channels in T lymphocytes: A possible role in T cell proliferation [J].
Conforti, L ;
Petrovic, M ;
Mohammad, D ;
Lee, S ;
Ma, Q ;
Barone, S ;
Filipovich, AH .
JOURNAL OF IMMUNOLOGY, 2003, 170 (02) :695-702
[7]   Calcium-activated potassium channels sustain calcium signaling in T lymphocytes - Selective blockers and manipulated channel expression levels [J].
Fanger, CM ;
Rauer, H ;
Neben, AL ;
Miller, MJ ;
Rauer, H ;
Wulff, H ;
Rosa, JC ;
Ganellin, CR ;
Chandy, KG ;
Cahalan, MD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (15) :12249-12256
[8]   Differential Ca2+ influx, KCa channel activity, and Ca2+ clearance distinguish Th1 and Th2 lymphocytes [J].
Fanger, CM ;
Neben, AL ;
Cahalan, MD .
JOURNAL OF IMMUNOLOGY, 2000, 164 (03) :1153-1160
[9]   Up-regulation of the IKCa1 potassium channel during T-cell activation -: Molecular mechanism and functional consequences [J].
Ghanshani, S ;
Wulff, H ;
Miller, MJ ;
Rohm, H ;
Neben, A ;
Gutman, GA ;
Cahalan, MD ;
Chandy, KG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (47) :37137-37149
[10]  
GRYNKIEWICZ G, 1985, J BIOL CHEM, V260, P3440