A linear-time randomized algorithm for the bounded voronoi diagram of a simple polygon

被引:9
作者
Klein, R
Lingas, A
机构
[1] LUND UNIV,DEPT COMP SCI,S-22100 LUND,SWEDEN
[2] FERNUNIVERSITAT HAGEN,D-58084 HAGEN,GERMANY
关键词
bounded Voronoi diagram; generalized Delaunay triangulation; randomized algorithm; histogram decomposition;
D O I
10.1142/S0218195996000198
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Far a polygon P, the bounded Voronoi diagram of P is a partition of P into regions assigned to the vertices of P. A point p inside P belongs to the region of a vertex v if and only if v is the closest vertex of P visible from p. We present a randomized algorithm that builds the bounded Voronoi diagram of a simple polygon in linear expected time. Among other applications, we can construct within the same time bound the generalized Delaunay triangulation of P and the minimal spanning tree on P's vertices that is contained in P.
引用
收藏
页码:263 / 278
页数:16
相关论文
共 19 条
[1]   A LINEAR-TIME ALGORITHM FOR COMPUTING THE VORONOI DIAGRAM OF A CONVEX POLYGON [J].
AGGARWAL, A ;
GUIBAS, LJ ;
SAXE, J ;
SHOR, PW .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (06) :591-604
[2]  
[Anonymous], P 3 ANN S COMP GEOM
[3]  
AURENHAMMER F, 1991, COMPUT SURV, V23, P345, DOI 10.1145/116873.116880
[4]   TRIANGULATING A SIMPLE POLYGON IN LINEAR TIME [J].
CHAZELLE, B .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (05) :485-524
[5]  
CHEW P, 1987, P 3 ACM S COMP GEOM, P215
[6]  
CHEW P, 1986, UNPUB BUILDING VORON
[7]  
DJIDJEV H, LNCS, V519, P54
[8]  
Klein R., 1992, Proceedings of the Eighth Annual Symposium on Computational Geometry, P312, DOI 10.1145/142675.142738
[9]  
KLEIN R, 1993, P 5CCCG, P370
[10]  
KLEIN R, IN PRESS INT J COMPU