Conifer regeneration problems in boreal and temperate forests with ericaceous understory: Role of disturbance, seedbed limitation, and keytsone species change

被引:222
作者
Mallik, AU [1 ]
机构
[1] Lakehead Univ, Dept Biol, Thunder Bay, ON P7B 5E1, Canada
关键词
keystone species; ecosystem engineer; alternate stable states; ericaceous plants; allelopathy; phenolics; fire; harvesting; regeneration; succession; mycorrhizae; growth check;
D O I
10.1080/713610860
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Conifer regeneration failure in the presence of dense ericaceous cover resulting from the removal of canopy trees by forest harvesting observed in boreal and temperate forest has been attributed to allelopathy, competition, and soil nutrient imbalance. Ecosystem-level alleopathic effect has been argued as a cause for conifer regeneration failure by citing examples from a species-poor boreal forest in northern Sweden with ground vegetation dominated by crowberry (Empetrum hermaphroditum, Ericales) and New Zealand dairy pastures invaded by nodding or musk thistle (Carduus nutans). This article aims to explain the phenomenon of vegetation shift from conifer forest to ericaceous heath by extending the argument of ecosystem-level impact of ericaceous plants and linking the disturbance-mediated regeneration strategies of the dominant conifer species and the understory ericaceous species with the quality of seedbed substrate that influence the direction of secondary succession. It has been argued that fire severity plays a pivotal role in controlling seedbed quality and the regeneration mechanisms of conifers, which in turn determines the direction of post-disturbance succession. The post-fire-dominated ericaceous plants and their habitat-modifying effects have been explained from the point of view of keystone species concept and their role as ecosystem engineers. In the absence of high severity natural fires the canopy keystone species (conifer) fails to regenerate successfully mainly due to limitation of favorable seedbed. On the other hand, the understory ericaceous plants regenerate vigorously by vegetative methods from the belowground components that survived the fire. Forest harvesting by clearcutting or selective cutting also create similar vigorous vegetative regrowth of ericaceous plants, but conifer regeneration suffers from the lack of a suitable seedbed. Thus in the absence of successful conifer regeneration, the vigorously growing understory ericaceous plants become the new keystone species. The new keystone ericaceous species bring about a significant long-term habitat change by rapid accumulation of plyphenol-rich humus. Ericaceous phenolic compounds have been found to inhibit seed germination and seedling growth of conifers. By forming protein-phenol complexes they cause a further reduction of available nitrogen of the already nutrient-stressed habitat. A low pH condition in the presence of phenolic compounds causes the leaching of metallic ions and forms hard iron pans that impair soil water movement. The phenolic allelochemicals of ericaceous humus are also inhibitory to many conifer ectomycorrhizae. On the other hand, ericaceous plants perpetuate in the community by their stress-tolerating strategies as well as their ability to acquire nutrients through ericoid mycorrhizae. Three mechanisms working at the ecosystem level can be suggested as the cause of vegetation shift from forest to ericaceous heath. These are (1) the absence of high severity natural fire and the limitation of suitable conifer seedbed in the presence of thick humus, (2) increased competition resulting from the rapid vegetative regeneration of understory ericaceous plants after forest canopy opening by harvesting or nonsevere fire, and (3) habitat degradation by phenolic allelochemicals of ericaceous plants causing a soil nutrient imbalance and iron pan formation. Thus, a shift in keystone species from conifer to ericaceous plant in the post-disturbance habitat may induce a retrogressive succession due to ecosystem-level engineering effects of the new keystone species. Vegetation management in conifer-ericaceous communities depends on land management objectives. If the objective is to produce timber and other forest products then the control of ericaceous plants and site preparation is necessary after forest harvesting. Ploughing and liming followed by conifer planting and repeated N fertilization has been applied successfully to promote afforestation of Calluna heathlands in Britain. However, such practice has not been proven successful in the reforestation of Kalmia-dominated sites in eastern Canada. If, on the other hand, the land management objective is to maintain heathlands for herbivore production or conservation of cultural landscape, as in the case of certain Calluna-dominated heathland in Western Europe, then moderately hot prescribed burning is useful as a management tool.
引用
收藏
页码:341 / 366
页数:26
相关论文
共 241 条
[1]  
ANDRE J, 1987, REV ECOL BIOL SOL, V24, P301
[2]   REGENERATION OF BILBERRY SPRUCE FOREST - ALLELOPATHY, HUMUS AND MYCORRHIZAS [J].
ANDRE, J .
ACTA BOTANICA GALLICA, 1994, 141 (04) :551-558
[3]  
ANDREAE MO, 1991, GLOBAL BIOMASS BURNING, P3
[4]  
[Anonymous], ADV SPACE RES
[5]  
[Anonymous], 1972, ECOLOGY HEATHLANDS
[6]  
[Anonymous], 1994, SALAL CEDAR HEMLOCK
[7]  
ATTIWILL PM, 1988, FOREST ECOL MANAG, V63, P247
[8]   PROTEIN-BINDING PHENOLICS AND THE INHIBITION OF NITRIFICATION IN SUBALPINE BALSAM FIR SOILS [J].
BALDWIN, IT ;
OLSON, RK ;
REINERS, WA .
SOIL BIOLOGY & BIOCHEMISTRY, 1983, 15 (04) :419-423
[9]   Nitrogen mobilization from protein-polyphenol complex by ericoid and ectomycorrhizal fungi [J].
Bending, GD ;
Read, DJ .
SOIL BIOLOGY & BIOCHEMISTRY, 1996, 28 (12) :1603-1612
[10]   Effects of the soluble polyphenol tannic acid on the activities of ericoid and ectomycorrhizal fungi [J].
Bending, GD ;
Read, DJ .
SOIL BIOLOGY & BIOCHEMISTRY, 1996, 28 (12) :1595-1602