The TXP motif in the second transmembrane helix of CCR5 - A structural determinant of chemokine-induced activation

被引:114
作者
Govaerts, C
Blanpain, C
Deupi, X
Ballet, S
Ballesteros, JA
Wodak, SJ
Vassart, G
Pardo, L
Parmentier, M
机构
[1] Free Univ Brussels, Inst Rech Interdisciplinary Biol Humaine & Nucl, B-1070 Brussels, Belgium
[2] Univ Autonoma Barcelona, Fac Med, Unitat Bioestadist, Lab Med Computac, Bellaterra 08193, Spain
[3] Free Univ Brussels, Serv Conformat Macromol Biol, B-1050 Brussels, Belgium
[4] Novasite Pharmaceut Inc, San Diego, CA 92121 USA
关键词
D O I
10.1074/jbc.M011670200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CCR5 is a G-protein-coupled receptor activated by the chemokines RANTES (regulated on activation normal T cell expressed and secreted), macrophage inflammatory protein Icu and Ip, and monocyte chemotactic protein 2 and is the main co-receptor for the macrophage-tropic human immunodeficiency virus strains. We have identified a sequence motif (TXP) in the second transmembrane helix of chemokine receptors and investigated its role by theoretical and experimental approaches. Molecular dynamics simulations of model cy-helices in a nonpolar environment were used to show that a TXP motif strongly bends these helices, due to the coordinated action of the proline, which kinks the helix, and of the threonine, which further accentuates this structural deformation. Site-directed mutagenesis of the corresponding Pro and Thr residues in CCR5 allowed us to probe the consequences of these structural findings in the context of the whole receptor. The P84A mutation leads to a decreased binding affinity for chemokines and nearly abolishes the functional response of the receptor. In contrast, mutation of Thr-82(2.56) into Val, Ala, Cys, or Ser does not affect chemokine binding. However, the functional response was found to depend strongly on the nature of the substituted side chain. The rank order of impairment of receptor activation is P84A > T82V > T82A > T82C > T82S. This ranking of impairment parallels the bending of the alpha -helix observed in the molecular simulation study.
引用
收藏
页码:13217 / 13225
页数:9
相关论文
共 59 条
[1]   The CXC chemokines growth-regulated oncogene (GRO) alpha, GRO beta, GRO gamma, neutrophil-activating peptide-2, and epithelial cell-derived neutrophil-activating peptide-78 are potent agonists for the type B, but not the type A, human interleukin-8 receptor [J].
Ahuja, SK ;
Murphy, PM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (34) :20545-20550
[2]   A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity [J].
Baba, M ;
Nishimura, O ;
Kanzaki, N ;
Okamoto, M ;
Sawada, H ;
Iizawa, Y ;
Shiraishi, M ;
Aramaki, Y ;
Okonogi, K ;
Ogawa, Y ;
Meguro, K ;
Fujino, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (10) :5698-5703
[3]   Chemokines and leukocyte traffic [J].
Baggiolini, M .
NATURE, 1998, 392 (6676) :565-568
[4]  
Ballesteros J.A., 1995, Methods in Neurosciences, V25, P366, DOI [DOI 10.1016/S1043-9471(05)80049-7, 10.1016/S1043-9471(05)80049-7]
[5]   Serine and threonine residues bend α-helices in the χ1 = g- conformation [J].
Ballesteros, JA ;
Deupi, X ;
Olivella, M ;
Haaksma, EEJ ;
Pardo, L .
BIOPHYSICAL JOURNAL, 2000, 79 (05) :2754-2760
[6]   THE CONSERVED 7-TRANSMEMBRANE SEQUENCE NP(X)(2,3)Y OF THE G-PROTEIN-COUPLED RECEPTOR SUPERFAMILY REGULATES MULTIPLE PROPERTIES OF THE BETA(2)-ADRENERGIC RECEPTOR [J].
BARAK, LS ;
MENARD, L ;
FERGUSON, SSG ;
COLAPIETRO, AM ;
CARON, MG .
BIOCHEMISTRY, 1995, 34 (47) :15407-15414
[7]   HELIX GEOMETRY IN PROTEINS [J].
BARLOW, DJ ;
THORNTON, JM .
JOURNAL OF MOLECULAR BIOLOGY, 1988, 201 (03) :601-619
[8]  
Blanpain C, 1999, BLOOD, V94, P1899
[9]   Extracellular cysteines of CCR5 are required for chemokine binding, but dispensable for HIV-1 coreceptor activity [J].
Blanpain, C ;
Lee, B ;
Vakili, J ;
Doranz, BJ ;
Govaerts, C ;
Migeotte, I ;
Sharron, M ;
Dupriez, V ;
Vassart, G ;
Doms, RW ;
Parmentier, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (27) :18902-18908
[10]   Multiple charged and aromatic residues in CCR5 amino-terminal domain are involved in high affinity binding of both chemokines and HIV-1 Env protein [J].
Blanpain, C ;
Doranz, BJ ;
Vakili, J ;
Rucker, J ;
Govaerts, C ;
Baik, SSW ;
Lorthioir, O ;
Migeotte, I ;
Libert, F ;
Baleux, F ;
Vassart, G ;
Doms, RW ;
Parmentier, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (49) :34719-34727