Optimizing the Channel Selection and Classification Accuracy in EEG-Based BCI

被引:317
作者
Arvaneh, Mahnaz [1 ]
Guan, Cuntai [2 ]
Ang, Kai Keng [2 ]
Quek, Chai [1 ]
机构
[1] Nanyang Technol Univ, Sch Comp Engn, Singapore 639798, Singapore
[2] ASTAR, Inst Infocomm Res, Singapore 138632, Singapore
关键词
Brain-computer interface (BCI); EEG channel selection; motor imagery; sparse common spatial pattern (SCSP); COMPUTER-INTERFACE RESEARCH; COMMUNICATION; COMPONENTS;
D O I
10.1109/TBME.2011.2131142
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Multichannel EEG is generally used in brain-computer interfaces (BCIs), whereby performing EEG channel selection 1) improves BCI performance by removing irrelevant or noisy channels and 2) enhances user convenience from the use of lesser channels. This paper proposes a novel sparse common spatial pattern (SCSP) algorithm for EEG channel selection. The proposed SCSP algorithm is formulated as an optimization problem to select the least number of channels within a constraint of classification accuracy. As such, the proposed approach can be customized to yield the best classification accuracy by removing the noisy and irrelevant channels, or retain the least number of channels without compromising the classification accuracy obtained by using all the channels. The proposed SCSP algorithm is evaluated using two motor imagery datasets, one with a moderate number of channels and another with a large number of channels. In both datasets, the proposed SCSP channel selection significantly reduced the number of channels, and outperformed existing channel selection methods based on Fisher criterion, mutual information, support vector machine, common spatial pattern, and regularized common spatial pattern in classification accuracy. The proposed SCSP algorithm also yielded an average improvement of 10% in classification accuracy compared to the use of three channels (C3, C4, and Cz).
引用
收藏
页码:1865 / 1873
页数:9
相关论文
共 34 条
[1]  
Ang KK, 2008, IEEE IJCNN, P2390, DOI 10.1109/IJCNN.2008.4634130
[2]  
[Anonymous], 2003, PRACTICAL GUIDE SUPP
[3]  
[Anonymous], 2007, Chaos Complex Lett.
[4]  
Arvaneh M., 2010, P INT ASS SCI TECHN, P86
[5]   Brain-computer-interface research: Coming of age [J].
Birbaumer, N .
CLINICAL NEUROPHYSIOLOGY, 2006, 117 (03) :479-483
[6]   The Berlin Brain-Computer Interface: Accurate Performance From First-Session in BCI-Naive Subjects [J].
Blankertz, Benjamin ;
Losch, Florian ;
Krauledat, Matthias ;
Dornhege, Guido ;
Curio, Gabriel ;
Mueller, Klaus-Robert .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (10) :2452-2462
[7]   Optimizing spatial filters for robust EEG single-trial analysis [J].
Blankertz, Benjamin ;
Tomioka, Ryota ;
Lemm, Steven ;
Kawanabe, Motoaki ;
Mueller, Klaus-Robert .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) :41-56
[8]   The BCI competition III:: Validating alternative approaches to actual BCI problems [J].
Blankertz, Benjamin ;
Mueller, Klaus-Robert ;
Krusienski, Dean J. ;
Schalk, Gerwin ;
Wolpaw, Jonathan R. ;
Schloegl, Alois ;
Pfurtscheller, Gert ;
Millan, Jose D. R. ;
Schroeder, Michael ;
Birbaumer, Niels .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2006, 14 (02) :153-159
[9]   Learning to control brain activity: A review of the production and control of EEG components for driving brain-computer interface (BCI) systems [J].
Curran, EA ;
Stokes, MJ .
BRAIN AND COGNITION, 2003, 51 (03) :326-336
[10]   Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms [J].
Dornhege, G ;
Blankertz, B ;
Curio, G ;
Müller, KR .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (06) :993-1002