On a differential equation approach to the weighted or orthogonal Procrustes problem

被引:22
作者
Chu, MT
Trendafilov, NT
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Bulgarian Acad Sci, Inst Math, Comp Stochast Lab, BU-1090 Sofia, Bulgaria
基金
日本学术振兴会; 美国国家科学基金会;
关键词
constrained regression; Procrustes rotation; projected gradient; optimality condition;
D O I
10.1023/A:1008934100736
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The weighted orthogonal Procrustes problem, an important class of data matching problems in multivariate data analysis, is reconsidered in this paper. It is shown that a steepest descent flow on the manifold of orthogonal matrices can naturally be formulated. This formulation has two important implications: that the weighted orthogonal Procrustes problem can be solved as an initial value problem by any available numerical integrator and that the first order and the second order optimality conditions can also be derived. The proposed approach is illustrated by numerical examples.
引用
收藏
页码:125 / 133
页数:9
相关论文
共 17 条
[1]  
[Anonymous], 1974, Differential Equations, Dynamical Systems, and Linear Algebra
[2]  
[Anonymous], 1994, FIELDS I COMM
[3]  
[Anonymous], 1970, ITERATIVE SOLUTION N, DOI DOI 10.1137/1.9780898719468
[4]  
Bellman R., 1970, INTRO MATRIX ANAL
[5]   THE PROJECTED GRADIENT-METHOD FOR LEAST-SQUARES MATRIX APPROXIMATIONS WITH SPECTRAL CONSTRAINTS [J].
CHU, MT ;
DRIESSEL, KR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (04) :1050-1060
[6]  
CHU MT, 1996, UNPUB ORTHOGONALLY C
[7]   MAINTAINING SOLUTION INVARIANTS IN THE NUMERICAL-SOLUTION OF ODES [J].
GEAR, CW .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (03) :734-743
[8]  
Gill M., 1981, Practical Optimization
[9]  
Golub G.H., 1991, Matrix Computation
[10]  
GOWER JC, 1984, HDB APPL MATH B, V4