Hamiltonian analysis of Plebanski theory

被引:67
作者
Buffenoir, E [1 ]
Henneaux, M
Noui, K
Roche, P
机构
[1] Univ Montpellier 2, CNRS, Lab Phys Math & Theor, F-34095 Montpellier, France
[2] Free Univ Brussels, Phys Theor & Math Inst, B-1050 Brussels, Belgium
[3] Free Univ Brussels, Int Solvay Inst, B-1050 Brussels, Belgium
[4] Ctr Estudios Cient, Valdivia, Chile
[5] Penn State Univ, Ctr Gravitat Phys & Geometry, State Coll, PA 16801 USA
基金
美国国家科学基金会;
关键词
D O I
10.1088/0264-9381/21/22/012
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the Hamiltonian formulation of Plebanski theory in both the Euclidean and Lorentzian cases. A careful analysis of the constraints shows that the system is non-regular, i.e., the rank of the Dirac matrix is non-constant on the non-reduced phase space. We identify the gravitational and topological sectors which are regular subspaces of the non-reduced phase space. The theory can be restricted to the regular subspace which contains the gravitational sector. We explicitly identify first- and second-class constraints in this case. We compute the determinant of the Dirac matrix and the natural measure for the path integral of the Plebanski theory (restricted to the gravitational sector). This measure is the analogue of the Leutwyler-Fradkin-Vilkovisky measure of quantum gravity.
引用
收藏
页码:5203 / 5220
页数:18
相关论文
共 34 条
[1]   Spin-foam models of Riemannian quantum gravity [J].
Baez, JC ;
Christensen, JD ;
Halford, TR ;
Tsang, DC .
CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (18) :4627-4648
[2]  
Baez JC, 2000, LECT NOTES PHYS, V543, P25
[3]   The dynamical structure of higher dimensional Chern-Simons theory [J].
Banados, M ;
Garay, LJ ;
Henneaux, M .
NUCLEAR PHYSICS B, 1996, 476 (03) :611-635
[4]  
Banados M., 1996, PHYS REV D, V53, P593
[5]   TOPOLOGICAL FIELD-THEORY [J].
BIRMINGHAM, D ;
BLAU, M ;
RAKOWSKI, M ;
THOMPSON, G .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1991, 209 (4-5) :129-340
[6]  
BOJOWALD M, 2003, GRQC0303026
[7]   SELF-DUAL 2-FORMS AND GRAVITY [J].
CAPOVILLA, R ;
DELL, J ;
JACOBSON, T ;
MASON, L .
CLASSICAL AND QUANTUM GRAVITY, 1991, 8 (01) :41-57
[8]   TOPOLOGICAL BF THEORIES IN 3 AND 4 DIMENSIONS [J].
CATTANEO, AS ;
COTTARAMUSINO, P ;
FROHLICH, J ;
MARTELLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (11) :6137-6160
[9]  
CRANE L, SER KNOTS EVERYTHING, V3, P120
[10]  
De Pietri R, 1999, CLASSICAL QUANT GRAV, V16, P2187, DOI 10.1088/0264-9381/16/7/303