Convex Arrhenius plots and their interpretation

被引:144
作者
Truhlar, DG [1 ]
Kohen, A
机构
[1] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Inst Supercomp, Minneapolis, MN 55455 USA
[3] Univ Iowa, Dept Chem, Iowa City, IA 52242 USA
关键词
D O I
10.1073/pnas.98.3.848
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper draws attention to selected experiments on enzyme-catalyzed reactions that show convex Arrhenius plots, which are very rare, and points out that Tolman's interpretation of the activation energy places a fundamental model-independent constraint on any detailed explanation of these reactions. The analysis presented here shows that in such systems, the rate coefficient as a function of energy is not just increasing more slowly than expected, it is actually decreasing. This interpretation of the data provides a constraint on proposed microscopic models, i.e., it requires that any successful model of a reaction with a convex Arrhenius plot should be consistent with the microcanonical rate coefficient being a decreasing function of energy. The implications and limitations of this analysis to interpreting enzyme mechanisms are discussed, This model-independent conclusion has broad applicability to all fields of kinetics, and we also draw attention to an analogy with diffusion in metastable fluids and glasses.
引用
收藏
页码:848 / 851
页数:4
相关论文
共 56 条
[1]   Quantum dynamics of hydride transfer in enzyme catalysis [J].
Alhambra, C ;
Corchado, JC ;
Sánchez, ML ;
Gao, JL ;
Truhlar, DG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (34) :8197-8203
[2]   Activated chemistry in the presence of a strongly symmetrically coupled vibration [J].
Antoniou, D ;
Schwartz, SD .
JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (09) :3620-3625
[3]   Large kinetic isotope effects in enzymatic proton transfer and the role of substrate oscillations [J].
Antoniou, D ;
Schwartz, SD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (23) :12360-12365
[4]   Enzymatic H-transfer requires vibration-driven extreme tunneling [J].
Basran, J ;
Sutcliffe, MJ ;
Scrutton, NS .
BIOCHEMISTRY, 1999, 38 (10) :3218-3222
[5]   DYNAMIC THEORY OF PROTON TUNNELING TRANSFER RATES IN SOLUTION - GENERAL FORMULATION [J].
BORGIS, D ;
HYNES, JT .
CHEMICAL PHYSICS, 1993, 170 (03) :315-346
[6]  
BORGIS D, 1989, NATO ADV SCI I A-LIF, V178, P293
[7]   Chemical basis for enzyme catalysis [J].
Bruice, TC ;
Benkovic, SJ .
BIOCHEMISTRY, 2000, 39 (21) :6267-6274
[8]   VIBRATIONALLY ENHANCED TUNNELING AS A MECHANISM FOR ENZYMATIC HYDROGEN TRANSFER [J].
BRUNO, WJ ;
BIALEK, W .
BIOPHYSICAL JOURNAL, 1992, 63 (03) :689-699
[9]   SIMULATION OF IONIC-DIFFUSION IN SOLID POLYMER ELECTROLYTES WITH CORRELATED CHAIN MOTION [J].
CHANG, W ;
XU, G .
JOURNAL OF CHEMICAL PHYSICS, 1993, 99 (03) :2001-2003
[10]  
DENBIGH K, 1971, PRINCIPLES CHEM EQUI, P342