Stress memory in plants:: a negative regulation of stomatal response and transient induction of rd22 gene to light in abscisic acid-entrained Arabidopsis plants

被引:95
作者
Goh, CH
Nam, HG
Park, YS
机构
[1] Pohang Univ Sci & Technol, Div Mol & Life Sci, Pohang 790784, Kyungbuk, South Korea
[2] Pohang Univ Sci & Technol, Dept Life Sci, Pohang 790784, Kyungbuk, South Korea
[3] Pohang Univ Sci & Technol, Biotechnol Res Ctr, Pohang 790784, Kyungbuk, South Korea
关键词
abscisic acid (ABA); adaptation; gene expression; memory; stomatal behavior; stress;
D O I
10.1046/j.1365-313X.2003.01872.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
All organisms, including plants, perceive environmental stress, and they use this information to modify their behavior or development. Here, we demonstrate that Arabidopsis plants have memory functions related to repeated exposure to stressful concentrations of the phytohormone abscisic acid (ABA), which acts as a chemical signal. Repeated exposure of plants to ABA (40 mu<smallcapitals>m</smallcapitals> for 2 h) impaired light-induced stomatal opening or inhibited the response to a light stimulus after ABA-entrainment under both dark/light cycle and continuous light. Moreover, there were transient expressions of the rd22 gene during the same periods under both the growing conditions. Such acquired information in ABA-entrained plants produced a long-term sensitization. When the time of light application was changed, a transient induction of the rd22 gene in plants after ABA-entrainment indicated that these were light-associated responses. These transient effects were also observed in kin1, rab18, and rd29B. The transient expression of AtNCED3, causing the accumulation of endogenous ABA, indicated a possible regulation by ABA-dependent pathways in ABA-entrained plants. An ABA immunoassay supported this hypothesis: ABA-entrained plants showed a transient increase in endogenous ABA level from 220 to 250 pmol g(-1) fresh mass at 1-2 h of the training period, whereas ABA-deficient (aba2) mutants did not. Taking into account these results, we propose that plants have the ability to memorize stressful environmental experiences, and discuss the molecular events in ABA-entrained plants.
引用
收藏
页码:240 / 255
页数:16
相关论文
共 55 条
[1]   Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression [J].
Abe, H ;
YamaguchiShinozaki, K ;
Urao, T ;
Iwasaki, T ;
Hosokawa, D ;
Shinozaki, K .
PLANT CELL, 1997, 9 (10) :1859-1868
[2]   IS CONTIGUITY DETECTION IN CLASSICAL-CONDITIONING A SYSTEM OR A CELLULAR PROPERTY - LEARNING IN APLYSIA SUGGESTS A POSSIBLE MOLECULAR SITE [J].
ABRAMS, TW ;
KANDEL, ER .
TRENDS IN NEUROSCIENCES, 1988, 11 (04) :128-135
[3]   Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells [J].
Allen, GJ ;
Kuchitsu, K ;
Chu, SP ;
Murata, Y ;
Schroeder, JI .
PLANT CELL, 1999, 11 (09) :1785-1798
[4]   Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity [J].
Alvarez, ME ;
Pennell, RI ;
Meijer, PJ ;
Ishikawa, A ;
Dixon, RA ;
Lamb, C .
CELL, 1998, 92 (06) :773-784
[5]   The multisensory guard cell. Stomatal responses to blue light and abscisic acid [J].
Assmann, SM ;
Shimazaki, K .
PLANT PHYSIOLOGY, 1999, 119 (03) :809-815
[6]   Immunological ''memory'' in the induced accumulation of nicotine in wild tobacco [J].
Baldwin, IT ;
Schmelz, EA .
ECOLOGY, 1996, 77 (01) :236-246
[7]   Plant stress adaptations - making metabolism move [J].
Bohnert, HJ ;
Sheveleva, E .
CURRENT OPINION IN PLANT BIOLOGY, 1998, 1 (03) :267-274
[8]   Dehydrin transcript fluctuations during a day/night cycle in drought-stressed sunflower [J].
Cellier, F ;
Conéjéro, G ;
Casse, F .
JOURNAL OF EXPERIMENTAL BOTANY, 2000, 51 (343) :299-304
[9]   GENE-EXPRESSION REGULATED BY ABSCISIC-ACID AND ITS RELATION TO STRESS TOLERANCE [J].
CHANDLER, PM ;
ROBERTSON, M .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1994, 45 :113-141
[10]  
DAVIES WJ, 1991, ANNU REV PLANT PHYS, V42, P55, DOI 10.1146/annurev.pp.42.060191.000415