Functional contribution of Pds5 to cohesin-mediated cohesion in human cells and Xenopus egg extracts

被引:156
作者
Losada, A
Yokochi, T
Hirano, T
机构
[1] CNIO, Spanish Natl Canc Ctr, Madrid 28029, Spain
[2] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA
关键词
sister chromatid cohesion; chromosome assembly; RNA interference; Xenopus;
D O I
10.1242/jcs.02355
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Sister chromatid cohesion is essential for proper segregation of the genome in mitosis and meiosis. Central to this process is cohesin, a multi-protein complex conserved from yeast to human. Previous genetic studies in fungi have identified Pds5/BimD/Spo76 as an additional factor implicated in cohesion. Here we describe the biochemical and functional characterization of two Pds5-like proteins, Pds5A and Pds5B, from vertebrate cells. In HeLa cells, Pds5 proteins physically interact with cohesin and associate with chromatin in a cohesin-dependent manner. Depletion of the cohesin subunit Scc1 by RNA interference leads to the assembly of chromosomes with severe cohesion defects. A similar yet milder set of defects is observed in cells with reduced levels of Pds5A or Pds5B. In Xenopus egg extracts, mitotic chromosomes assembled in the absence of Pds5A and Pds5B display no discernible defects in arm cohesion, but centromeric cohesion is apparently loosened. Unexpectedly, these chromosomes retain an unusually high level of cohesin. Thus, Pds5 proteins seem to affect the stable maintenance of cohesin-mediated cohesion and its efficient dissolution during mitosis. We propose that Pds;5 proteins play both positive and negative roles in sister chromatid cohesion, possibly by directly modulating the dynamic interaction of cohesin with chromatin. This idea would explain why cells lacking Pds5 function display rather complex and diverse phenotypes in different organisms.
引用
收藏
页码:2133 / 2141
页数:9
相关论文
共 41 条
[1]   Condensin and cohesin display different arm conformations with characteristic hinge angles [J].
Anderson, DE ;
Losada, A ;
Erickson, HP ;
Hirano, T .
JOURNAL OF CELL BIOLOGY, 2002, 156 (03) :419-424
[2]   ATP hydrolysis is required for cohesin's association with chromosomes [J].
Arumugam, P ;
Gruber, S ;
Tanaka, K ;
Haering, CH ;
Mechtler, K ;
Nasmyth, K .
CURRENT BIOLOGY, 2003, 13 (22) :1941-1953
[3]  
DENISON SH, 1993, GENETICS, V134, P1085
[4]   Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J].
Elbashir, SM ;
Harborth, J ;
Lendeckel, W ;
Yalcin, A ;
Weber, K ;
Tuschl, T .
NATURE, 2001, 411 (6836) :494-498
[5]   Dicer is essential for formation of the heterochromatin structure in vertebrate cells [J].
Fukagawa, T ;
Nogami, M ;
Yoshikawa, M ;
Ikeno, M ;
Okazaki, T ;
Takami, Y ;
Nakayama, T ;
Oshimura, M .
NATURE CELL BIOLOGY, 2004, 6 (08) :784-791
[6]   Early gene expression during androgen-induced inhibition of proliferation of prostate cancer cells: a new suppressor candidate on chromosome 13, in the BRCA2-Rb1 locus [J].
Geck, P ;
Szelei, J ;
Jimenez, J ;
Sonnenschein, C ;
Soto, AM .
JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1999, 68 (1-2) :41-50
[7]   Regulation of sister chromatid cohesion between chromosome arms [J].
Giménez-Abián, JF ;
Sumara, I ;
Hirota, T ;
Hauf, S ;
Gerlich, D ;
de la Torre, C ;
Ellenberg, J ;
Peters, JM .
CURRENT BIOLOGY, 2004, 14 (13) :1187-1193
[8]   Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae [J].
Glynn, EF ;
Megee, PC ;
Yu, HG ;
Mistrot, C ;
Unal, E ;
Koshland, DE ;
DeRisi, JL ;
Gerton, JL .
PLOS BIOLOGY, 2004, 2 (09) :1325-1339
[9]   Chromosomal cohesin forms a ring [J].
Gruber, S ;
Haering, CH ;
Nasmyth, K .
CELL, 2003, 112 (06) :765-777
[10]   Building and breaking bridges between sister chromatids [J].
Haering, CH ;
Nasmyth, K .
BIOESSAYS, 2003, 25 (12) :1178-1191