The molecular basis for oxidative stress-induced insulin resistance

被引:457
作者
Evans, JL
Maddux, BA
Goldfine, ID
机构
[1] Med Res Inst, San Francisco, CA 94107 USA
[2] Univ Calif San Francisco, San Francisco, CA USA
[3] Med Res Inst, San Francisco, CA USA
关键词
D O I
10.1089/ars.2005.7.1040
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Reactive oxygen and nitrogen molecules have been typically viewed as the toxic by-products of metabolism. However, accumulating evidence has revealed that reactive species, including hydrogen peroxide, serve as signaling molecules that are involved in the regulation of cellular function. The chronic and/or increased production of these reactive molecules or a reduced capacity for their elimination, termed oxidative stress, can lead to abnormal changes in intracellular signaling and result in chronic inflammation and insulin resistance. Inflammation and oxidative stress have been linked to insulin resistance in vivo. Recent studies have found that this association is not restricted to insulin resistance in type 2 diabetes, but is also evident in obese, nondiabetic individuals, and in those patients with the metabolic syndrome. An increased concentration of reactive molecules triggers the activation of serine/threonine kinase cascades such as c-jun N-terminal kinase, nuclear factor-kappa B, and others that in turn phosphorylate multiple targets, including the insulin receptor and the insulin receptor substrate (IRS) proteins. Increased serine phosphorylation of IRS reduces its ability to undergo tyrosine phosphorylation and may accelerate the degradation of IRS-1, offering an attractive explanation for the molecular basis of oxidative stress-induced insulin resistance. Consistent with this idea, studies with antioxidants such as vitamin E, alpha-lipoic acid, and N-acetylcysteine indicate a beneficial impact on insulin sensitivity, and offer the possibility for new treatment approaches for insulin resistance.
引用
收藏
页码:1040 / 1052
页数:13
相关论文
共 158 条
[1]   Role of redox potential and reactive oxygen species in stress signaling [J].
Adler, V ;
Yin, ZM ;
Tew, KD ;
Ronai, Z .
ONCOGENE, 1999, 18 (45) :6104-6111
[2]   Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action [J].
Aguirre, V ;
Werner, ED ;
Giraud, J ;
Lee, YH ;
Shoelson, SE ;
White, MF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (02) :1531-1537
[3]   The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307 [J].
Aguirre, V ;
Uchida, T ;
Yenush, L ;
Davis, R ;
White, MF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (12) :9047-9054
[4]   Gene expression and the thiol redox state [J].
Arrigo, AP .
FREE RADICAL BIOLOGY AND MEDICINE, 1999, 27 (9-10) :936-944
[5]  
AVRUCH J, 1982, J BIOL CHEM, V257, P5162
[6]   NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis [J].
Bataller, R ;
Schwabe, RF ;
Choi, YH ;
Yang, L ;
Paik, YH ;
Lindquist, J ;
Qian, T ;
Schoonhoven, R ;
Hagedorn, CH ;
Lemasters, JJ ;
Brenner, DA .
JOURNAL OF CLINICAL INVESTIGATION, 2003, 112 (09) :1383-1394
[7]   The free radical theory of aging matures [J].
Beckman, KB ;
Ames, BN .
PHYSIOLOGICAL REVIEWS, 1998, 78 (02) :547-581
[8]   Turning down insulin signaling [J].
Birnbaum, MJ .
JOURNAL OF CLINICAL INVESTIGATION, 2001, 108 (05) :655-659
[9]   Regulation of glucose transport and glycogen synthesis in L6 muscle cells during oxidative stress - Evidence for cross-talk between the insulin and SAPK2/p38 mitogen-activated protein kinase signaling pathways [J].
Blair, AS ;
Hajduch, E ;
Litherland, GJ ;
Hundal, HS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (51) :36293-36299
[10]   Biochemistry and molecular cell biology of diabetic complications [J].
Brownlee, M .
NATURE, 2001, 414 (6865) :813-820