RNA polymerase and transcription elongation factor Spt4/5 complex structure

被引:125
作者
Klein, Brianna J. [2 ]
Bose, Daniel [1 ]
Baker, Kevin J. [2 ]
Yusoff, Zahirah M. [2 ]
Zhang, Xiaodong [1 ]
Murakami, Katsuhiko S. [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Fac Nat Sci, Dept Life Sci, Struct Biol Ctr,Div Mol Biosci, London SW7 2AZ, England
[2] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA
基金
英国惠康基金; 美国国家科学基金会; 美国国家卫生研究院;
关键词
cryo-EM; Spt4/5-DSIF-NusG; X-ray crystallography; FACTOR NUSG; DSIF; PROMOTER; REVEALS; SYSTEM; ROLES; NELF; DNA;
D O I
10.1073/pnas.1013828108
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Spt4/5 in archaea and eukaryote and its bacterial homolog NusG is the only elongation factor conserved in all three domains of life and plays many key roles in cotranscriptional regulation and in recruiting other factors to the elongating RNA polymerase. Here, we present the crystal structure of Spt4/5 as well as the structure of RNA polymerase-Spt4/5 complex using cryoelectron microscopy reconstruction and single particle analysis. The Spt4/5 binds in the middle of RNA polymerase claw and encloses the DNA, reminiscent of the DNA polymerase clamp and ring helicases. The transcription elongation complex model reveals that the Spt4/5 is an upstream DNA holder and contacts the nontemplate DNA in the transcription bubble. These structures reveal that the cellular RNA polymerases also use a strategy of encircling DNA to enhance its processivity as commonly observed for many nucleic acid processing enzymes including DNA polymerases and helicases.
引用
收藏
页码:546 / 550
页数:5
相关论文
共 33 条
[1]   Nano positioning system reveals the course of upstream and nontemplate DNA within the RNA polymerase II elongation complex [J].
Andrecka, Joanna ;
Treutlein, Barbara ;
Izquierdo Arcusa, Maria Angeles ;
Muschielok, Adam ;
Lewis, Robert ;
Cheung, Alan C. M. ;
Cramer, Patrick ;
Michaelis, Jens .
NUCLEIC ACIDS RESEARCH, 2009, 37 (17) :5803-5809
[2]   Structural basis for converting a general transcription factor into an operon-specific virulence regulator [J].
Belogurov, Georgiy A. ;
Vassylyeva, Marina N. ;
Svetlov, Vladimir ;
Klyuyev, Sergiy ;
Grishin, Nick V. ;
Vassylyev, Dmitry G. ;
Artsimovitch, Irina .
MOLECULAR CELL, 2007, 26 (01) :117-129
[3]   A NusE:NusG Complex Links Transcription and Translation [J].
Burmann, Bjoern M. ;
Schweimer, Kristian ;
Luo, Xiao ;
Wahl, Markus C. ;
Stitt, Barbara L. ;
Gottesman, Max E. ;
Roesch, Paul .
SCIENCE, 2010, 328 (5977) :501-504
[4]   ESCHERICHIA-COLI NUSG PROTEIN STIMULATES TRANSCRIPTION ELONGATION RATES IN-VIVO AND IN-VITRO [J].
BUROVA, E ;
HUNG, SC ;
SAGITOV, V ;
STITT, BL ;
GOTTESMAN, ME .
JOURNAL OF BACTERIOLOGY, 1995, 177 (05) :1388-1392
[5]  
Carlo SD, 2010, TRANSCRIPTION, V1, P1
[6]   DSIF, the Paf1 complex, and Tat-SF1 have nonredundant, cooperative roles in RNA polymerase II elongation [J].
Chen, Yexi ;
Yamaguchi, Yuki ;
Tsugeno, Yuta ;
Yamamoto, Junichi ;
Yamada, Tomoko ;
Nakamura, Mitsuhiro ;
Hisatake, Koji ;
Handa, Hiroshi .
GENES & DEVELOPMENT, 2009, 23 (23) :2765-2777
[7]   Analysis of factor interactions with RNA polymerase II elongation complexes using a new electrophoretic mobility shift assay [J].
Cheng, Bo ;
Price, David H. .
NUCLEIC ACIDS RESEARCH, 2008, 36 (20)
[8]   On helicases and other motor proteins [J].
Enernark, Eric J. ;
Joshua-Tor, Leernor .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2008, 18 (02) :243-257
[9]   Structural basis of transcription:: An RNA polymerase II elongation complex at 3.3 Å resolution [J].
Gnatt, AL ;
Cramer, P ;
Fu, JH ;
Bushnell, DA ;
Kornberg, RD .
SCIENCE, 2001, 292 (5523) :1876-1882
[10]   A chromatin landmark and transcription initiation at most promoters in human cells [J].
Guenther, Matthew G. ;
Levine, Stuart S. ;
Boyer, Laurie A. ;
Jaenisch, Rudolf ;
Young, Richard A. .
CELL, 2007, 130 (01) :77-88