Nanotube responsive materials

被引:21
作者
Jayasinghe, Chaminda [1 ]
Li, Weifeng [2 ]
Song, Yi [3 ]
Abot, Jandro L. [4 ]
Shanov, Vesselin N. [5 ]
Fialkova, Svitlana [6 ]
Yarmolenko, Sergey [6 ]
Sundaramurthy, Surya
Chen, Ying [1 ]
Cho, Wondong [7 ]
Chakrabarti, Supriya
Li, Ge [8 ]
Yun, Yeoheung [9 ]
Schulz, Mark J. [2 ]
机构
[1] Univ Cincinnati, Dept Mat Engn, Cincinnati, OH 45221 USA
[2] Univ Cincinnati, Sch Dynam Syst, Cincinnati, OH 45221 USA
[3] Univ Cincinnati, Dept Aerosp Engn & Engn Mech, Cincinnati, OH 45221 USA
[4] Catholic Univ Amer, Washington, DC 20064 USA
[5] Univ Cincinnati, Sch Energy Environm Biol & Med Engn, Cincinnati, OH 45221 USA
[6] N Carolina A&T Univ, Ctr Adv Mat & Smart Struct, Greensboro, NC USA
[7] Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA
[8] Gen Nano LLC, Cincinnati, OH USA
[9] N Carolina Agr & Tech State Univ, Greensboro, NC USA
基金
美国国家科学基金会;
关键词
D O I
10.1557/mrs2010.680
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Individual nanotubes made of carbon, boron nitride, iron, silicon, or other materials have properties such as high strength, toughness, electrical and thermal conductivity, and light weight that cannot be matched by conventional materials. Nanotubes also change their properties in response to external fields and change one type of energy into another, which are useful for design. This article explores three main steps in exploiting responsive materials based on nanotubes: nanotube synthesis, macroscale material fabrication, and incorporation into device structures for novel applications. Nanotubes are always synthesized as individual particles in the form of powders, smoke particles, or aligned forests. To be industrially important, nanotubes generally must be processed to form derivative materials such as functionalized/coated powders and forests and macroscale intermediate materials such as sheets, ribbon, and yarn. The processed nanotubes are then used to develop responsive materials and devices that are able to resist, react to, or generate energy from their environment. This article provides background information and ideas on how to develop nanotube responsive materials for everyday use.
引用
收藏
页码:682 / 692
页数:11
相关论文
共 42 条
[1]   Delamination detection with carbon nanotube thread in self-sensing composite materials [J].
Abot, Jandro L. ;
Song, Yi ;
Vatsavaya, Maruthi Sri ;
Medikonda, Sandeep ;
Kier, Zachary ;
Jayasinghe, Chaminda ;
Rooy, Nathan ;
Shanov, Vesselin N. ;
Schulz, Mark J. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (07) :1113-1119
[2]   Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles [J].
Aliev, Ali E. ;
Oh, Jiyoung ;
Kozlov, Mikhail E. ;
Kuznetsov, Alexander A. ;
Fang, Shaoli ;
Fonseca, Alexandre F. ;
Ovalle, Raquel ;
Lima, Marcio D. ;
Haque, Mohammad H. ;
Gartstein, Yuri N. ;
Zhang, Mei ;
Zakhidov, Anvar A. ;
Baughman, Ray H. .
SCIENCE, 2009, 323 (5921) :1575-1578
[3]  
[Anonymous], 2003, NANOMEDICINE A
[4]  
ATKINSON KR, 2007, PHYSCIA B, V394, P2
[5]  
BANDO Y, 2007, MICROSC MICROANAL S2, V13
[6]   Carbon nanotube actuators [J].
Baughman, RH ;
Cui, CX ;
Zakhidov, AA ;
Iqbal, Z ;
Barisci, JN ;
Spinks, GM ;
Wallace, GG ;
Mazzoldi, A ;
De Rossi, D ;
Rinzler, AG ;
Jaschinski, O ;
Roth, S ;
Kertesz, M .
SCIENCE, 1999, 284 (5418) :1340-1344
[7]  
Dresselhaus MS, 2009, MATER RES SOC SYMP P, V1166, P29
[8]   Macroscopic, neat, single-walled carbon nanotube fibers [J].
Ericson, LM ;
Fan, H ;
Peng, HQ ;
Davis, VA ;
Zhou, W ;
Sulpizio, J ;
Wang, YH ;
Booker, R ;
Vavro, J ;
Guthy, C ;
Parra-Vasquez, ANG ;
Kim, MJ ;
Ramesh, S ;
Saini, RK ;
Kittrell, C ;
Lavin, G ;
Schmidt, H ;
Adams, WW ;
Billups, WE ;
Pasquali, M ;
Hwang, WF ;
Hauge, RH ;
Fischer, JE ;
Smalley, RE .
SCIENCE, 2004, 305 (5689) :1447-1450
[9]  
Freitas RA., 1999, NANOMEDICINE-UK
[10]  
*GEN NAN LLC, NAN MAT PROD