Infinitely divisible cascades to model the statistics of natural images

被引:28
作者
Chainais, Pierre [1 ]
机构
[1] Univ Blaise Pascal Clermont Ferrand II, CNRS, UMR, LIMOS, F-63173 Aubiere, France
关键词
stochastic processes; picture/image generation; fractals; image processing and computer vision; statistical; image models; FULLY-DEVELOPED TURBULENCE; MULTIFRACTAL FORMALISM; INTERMITTENCY; MARTINGALES; FLOW;
D O I
10.1109/TPAMI.2007.1113
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose to model the statistics of natural images, thanks to the large class of stochastic processes called Infinitely Divisible Cascades ( IDCs). IDCs were first introduced in one dimension to provide multifractal time series to model the so- called intermittency phenomenon in hydrodynamical turbulence. We have extended the definition of scalar IDCs from one to N dimensions and commented on the relevance of such a model in fully developed turbulence in [ 1]. In this paper, we focus on the particular 2D case. IDCs appear as good candidates to model the statistics of natural images. They share most of their usual properties and appear to be consistent with several independent theoretical and experimental approaches of the literature. We point out the interest of IDCs for applications to procedural texture synthesis.
引用
收藏
页码:2105 / 2119
页数:15
相关论文
共 75 条
[1]  
ALVAREZ L, 1999, SIZE OBJECTS NATURAL, V111
[2]  
[Anonymous], 1995, Turbulence: The Legacy of A. N. Kolmogrov
[3]   Analysis of random cascades using space-scale correlation functions [J].
Arneodo, A ;
Bacry, E ;
Manneville, S ;
Muzy, JF .
PHYSICAL REVIEW LETTERS, 1998, 80 (04) :708-711
[4]   Structure functions in turbulence, in various flow configurations, at Reynolds number between 30 and 5000, using extended self-similarity [J].
Arneodo, A ;
Baudet, C ;
Belin, F ;
Benzi, R ;
Castaing, B ;
Chabaud, B ;
Chavarria, R ;
Ciliberto, S ;
Camussi, R ;
Chilla, F ;
Dubrulle, B ;
Gagne, Y ;
Hebral, B ;
Herweijer, J ;
Marchand, M ;
Maurer, J ;
Muzy, JF ;
Naert, A ;
Noullez, A ;
Peinke, J ;
Roux, F ;
Tabeling, P ;
vandeWater, W ;
Willaime, H .
EUROPHYSICS LETTERS, 1996, 34 (06) :411-416
[5]   Random cascades on wavelet dyadic trees [J].
Arneodo, A ;
Bacry, E ;
Muzy, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (08) :4142-4164
[6]  
Arneodo A, 1997, J PHYS II, V7, P363, DOI 10.1051/jp2:1997130
[7]  
Arneodo A., 1995, Ondelettes, Multifractales et Turbulences (de lADN Aux Crossances Cristallines)
[8]  
Ayache A, 2002, POTENTIAL ANAL, V17, P31, DOI 10.1023/A:1015260803576
[9]   Log-infinitely divisible multifractal processes [J].
Bacry, E ;
Muzy, JF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 236 (03) :449-475
[10]  
Bacry E, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.026103