Superconductivity in the non-oxide perovskite MgCNi3

被引:610
作者
He, T
Huang, Q
Ramirez, AP
Wang, Y
Regan, KA
Rogado, N
Hayward, MA
Haas, MK
Slusky, JS
Inumara, K
Zandbergen, HW
Ong, NP
Cava, RJ [1 ]
机构
[1] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
[2] Princeton Univ, Princeton Mat Inst, Princeton, NJ 08544 USA
[3] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[4] Univ Maryland, Dept Mat & Nucl Engn, College Pk, MD 20742 USA
[5] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA
[6] Univ Calif Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, Los Alamos, NM USA
关键词
D O I
10.1038/35075014
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The interplay of magnetic interactions, the dimensionality of the crystal structure and electronic correlations in producing superconductivity is one of the dominant themes in the study of the electronic properties of complex materials. Although magnetic interactions and two-dimensional structures were long thought to be detrimental to the formation of a superconducting state, they are actually common features of both the high transition-temperature (T-c) copper oxides and low-T-c material Sr2RuO4, where they appear to be essential contributors to the exotic electronic states of these materials(1). Here we report that the perovskite-structured compound MgCNi3 is superconducting with a critical temperature of 8 K. This material is the three-dimensional analogue of the LnNi(2)B(2)C family of superconductors, which have critical temperatures up to 16 K (ref. 2). The itinerant electrons in both families of materials arise from the partial filling of the nickel d-states, which generally leads to ferromagnetism as is the case in metallic Ni. The high relative proportion of Ni in MgCNi3 suggests that magnetic interactions are important, and the lower T-c of this three-dimensional compound-when compared to the LnNi(2)B(2)C family-contrasts with conventional ideas regarding the origins of superconductivity.
引用
收藏
页码:54 / 56
页数:4
相关论文
共 8 条
[1]   SUPERCONDUCTIVITY IN THE QUATERNARY INTERMETALLIC COMPOUNDS LNNI2B2C [J].
CAVA, RJ ;
TAKAGI, H ;
ZANDBERGEN, HW ;
KRAJEWSKI, JJ ;
PECK, WF ;
SIEGRIST, T ;
BATLOGG, B ;
VANDOVER, RB ;
FELDER, RJ ;
MIZUHASHI, K ;
LEE, JO ;
EISAKI, H ;
UCHIDA, S .
NATURE, 1994, 367 (6460) :252-253
[2]  
CHAMBERLAND BL, 1992, CHEM SUPERCONDUCTOR, P2
[3]   TERNARY CARBIDES OF TRANSITION METALS WITH ALUMINUM AND MAGNESIUM [J].
HUETTER, LJ ;
STADELMAIER, HH .
ACTA METALLURGICA, 1958, 6 (05) :367-370
[4]   ON THE CRITICAL-TEMPERATURE FOR ANY STRENGTH OF THE ELECTRON PHONON COUPLING [J].
KRESIN, VZ .
PHYSICS LETTERS A, 1987, 122 (08) :434-438
[5]  
KRESIN VZ, 1975, FIZ TVERD TELA, V16, P2180
[6]   Magnetic field dependence of the low-temperature specific heat of the borocarbide superconductor LuNi2B2C [J].
Nohara, M ;
Isshiki, M ;
Takagi, H ;
Cava, RJ .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (07) :1888-1891
[7]   Unconventional superconductors: Contrasting cuprates and ruthenates [J].
Rice, TM .
PHYSICA C, 2000, 341 (341-348) :41-46
[8]  
SCHEIL E, 1953, Z METALLKD, V44, P387