Design of organic tandem solar cells using low- and high-bandgap polymer:fullerene composites

被引:22
作者
Boland, Patrick [2 ]
Lee, Keejoo [1 ]
Dean, James [1 ]
Namkoong, Gon [2 ]
机构
[1] Old Dominion Univ, Dept Mech & Aerosp Engn, Norfolk, VA 23529 USA
[2] Old Dominion Univ, Appl Res Ctr, Dept Elect & Comp Engn, Newport News, VA 23606 USA
关键词
PCPDTBT; P3HT; Low-bandgap; Tandem solar cells; Organic solar cells; CHARGE-TRANSPORT; PHOTOCURRENT GENERATION; EFFICIENT; DONORS; RULES; FILMS;
D O I
10.1016/j.solmat.2010.07.007
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Organic tandem solar cells were investigated using modeling and simulation methods to determine the optimal structural design and to predict device efficiencies. Each tandem structure comprised two subcells composed of varying combinations of low- and high-bandgap donor polymers and acceptor fullerene materials. The subcell employing the low-bandgap polymer, poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT), was combined with either C-61- or C-71-based acceptor fullerene ([6,6]-phenyl C-61/71 butyric acid methyl ester-PC61/71BM). Similarly, a subcell employing the high-bandgap polymer, poly(3-hexylthiophene) (P3HT), was modeled after including either PC61BM or PC71BM components. The mutual effects of both subcells in tandem were analyzed to determine such parameters as current density, open circuit voltage, fill factor, and power conversion efficiency. Our results indicate that appropriate spatial ordering of the subcells can allow achievement of device efficiencies exceeding 9%. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2170 / 2175
页数:6
相关论文
共 32 条
[1]   Organic tandem solar cells: A review [J].
Ameri, Tayebeh ;
Dennler, Gilles ;
Lungenschmied, Christoph ;
Brabec, Christoph J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (04) :347-363
[2]   Formation of a ground-state charge-transfer complex in polyfluorene/[6,6]-phenyl-C61 butyric acid methyl ester (PCBM) blend films and its role in the function of polymer/PCBM solar cells [J].
Benson-Smith, Jessica J. ;
Goris, Ludwig ;
Vandewal, Koen ;
Haenen, Ken ;
Manca, Jean V. ;
Vanderzande, Dirk ;
Bradley, Donal D. C. ;
Nelson, Jenny .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (03) :451-457
[3]   Device optimization in PCPDTBT:PCBM plastic solar cells [J].
Boland, Patrick ;
Lee, Keejoo ;
Namkoong, Gon .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (05) :915-920
[4]   Optimization of Active Layer Thickness in Planar Organic Solar Cells via Optical Simulation Methods [J].
Boland, Patrick ;
Namkoong, Gon .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (03)
[6]  
Dennler G., 2007, J APPL PHYS, V102
[7]   Design rules for donors in bulk-heterojunction tandem solar cells-towards 15 % energy-conversion efficiency [J].
Dennler, Gilles ;
Scharber, Markus C. ;
Ameri, Tayebeh ;
Denk, Patrick ;
Forberich, Karen ;
Waldauf, Christoph ;
Brabec, Christoph J. .
ADVANCED MATERIALS, 2008, 20 (03) :579-+
[8]   Polymer-Fullerene Bulk-Heterojunction Solar Cells [J].
Dennler, Gilles ;
Scharber, Markus C. ;
Brabec, Christoph J. .
ADVANCED MATERIALS, 2009, 21 (13) :1323-1338
[9]   Efficient tandem polymer photovoltaic cells with two subcells in parallel connection [J].
Guo, Xiaoyang ;
Liu, Fengmin ;
Yue, Wei ;
Xie, Zhiyuan ;
Geng, Yanhou ;
Wang, Lixiang .
ORGANIC ELECTRONICS, 2009, 10 (06) :1174-1177
[10]  
Heavens O.S., 1991, in: Optical Properties of Thin Solid Films, P69