Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging

被引:118
作者
Wang, XL
Rosol, M
Ge, SD
Peterson, D
McNamara, G
Pollack, H
Kohn, DB
Nelson, MD
Crooks, GM
机构
[1] Childrens Hosp Los Angeles, Div Immunol Res, BMT, Dept Radiol, Los Angeles, CA 90027 USA
[2] Childrens Hosp Los Angeles, Congressman Dixon Cellular Imaging Core, Los Angeles, CA 90027 USA
关键词
D O I
10.1182/blood-2003-05-1432
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The standard approach to assess hematopoietic stem cell (HSC) engraftment in experimental bone marrow transplantation models relies on detection of donor hematopoietic cells in host bone marrow following death; this approach provides data from only a single time point after transplantation for each animal. In vivo bioluminescence imaging was therefore explored as a method to gain a dynamic, longitudinal profile of human HSC engraftment in a living xenogeneic model. Luciferase expression using a lentiviral vector allowed detection of distinctly different patterns of engraftment kinetics from human CD34(+) and CD34(+)CD38(-) populations in the marrow NOD/SCID/beta2m(null) mice. Imaging showed an early peak (day 13) of engraftment from CD34(+) cells followed by a rapid decline in signal. Engraftment from the more primitive CD34(+)CD38(-) population was relatively delayed but by day 36 increased to significantly higher levels than those from CD34(+) cells (P < .05). Signal intensity from CD34(+)CD38(-)-engrafted mice continued to increase during more than 100 days of analysis. Flow cytometry analysis of bone marrow from mice after death demonstrated that levels of 1% donor cell engraftment could be readily detected by bioluminescence imaging; higher engraftment levels corresponded to higher image signal intensity. In vivo bioluminescence imaging provides a novel method to track the dynamics of engraftment of human HSC and progenitors in vivo. (C) 2003 by The American Society of Hematology.
引用
收藏
页码:3478 / 3482
页数:5
相关论文
共 21 条
[1]   In vivo imaging of gene and cell therapies [J].
Allport, JR ;
Weissleder, R .
EXPERIMENTAL HEMATOLOGY, 2001, 29 (11) :1237-1246
[2]   Transduction of human CD34(+) hematopoietic progenitor cells by a retroviral vector expressing an RRE decoy inhibits human immunodeficiency virus type 1 replication in myelomonocytic cells produced in long-term culture [J].
Bahner, I ;
Kearns, K ;
Hao, QL ;
Smogorzewska, EM ;
Kohn, DB .
JOURNAL OF VIROLOGY, 1996, 70 (07) :4352-4360
[3]   In vivo magnetic resonance tracking of magnetically labeled cells after transplantation [J].
Bulte, JWM ;
Duncan, ID ;
Frank, JA .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2002, 22 (08) :899-907
[4]   Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice [J].
Burgos, JS ;
Rosol, M ;
Moats, RA ;
Khankaldyyan, V ;
Kohn, DB ;
Nelson, MD ;
Laug, WE .
BIOTECHNIQUES, 2003, 34 (06) :1184-+
[5]   Stable transduction of quiescent CD34+CD38- human hematopoietic cells by HIV-1-based lentiviral vectors [J].
Case, SS ;
Price, MA ;
Jordan, CT ;
Yu, XJ ;
Wang, LJ ;
Bauer, G ;
Haas, DL ;
Xu, DK ;
Stripecke, R ;
Naldini, L ;
Kohn, DB ;
Crooks, GM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (06) :2988-2993
[6]   MULTIPLE MODIFICATIONS IN CIS-ELEMENTS OF THE LONG TERMINAL REPEAT OF RETROVIRAL VECTORS LEAD TO INCREASED EXPRESSION AND DECREASED DNA METHYLATION IN EMBRYONIC CARCINOMA-CELLS [J].
CHALLITA, PM ;
SKELTON, D ;
ELKHOUEIRY, A ;
YU, XJ ;
WEINBERG, K ;
KOHN, DB .
JOURNAL OF VIROLOGY, 1995, 69 (02) :748-755
[7]   Visualizing gene expression in living mammals using a bioluminescent reporter [J].
Contag, CH ;
Spilman, SD ;
Contag, PR ;
Oshiro, M ;
Eames, B ;
Dennery, P ;
Stevenson, DK ;
Benaron, DA .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1997, 66 (04) :523-531
[8]   Photonic detection of bacterial pathogens in living hosts [J].
Contag, CH ;
Contag, PR ;
Mullins, JI ;
Spilman, SD ;
Stevenson, DK ;
Benaron, DA .
MOLECULAR MICROBIOLOGY, 1995, 18 (04) :593-603
[9]   Use of reporter genes for optical measurements of neoplastic disease in vivo [J].
Contag, CH ;
Jenkins, D ;
Contag, FR ;
Negrin, RS .
NEOPLASIA, 2000, 2 (1-2) :41-52
[10]   Reversibility of CD34 expression on human hematopoietic stem cells that retain the capacity for secondary reconstitution [J].
Dao, MA ;
Arevalo, J ;
Nolta, JA .
BLOOD, 2003, 101 (01) :112-118