Polyproline and the "spectroscopic ruler" revisited with single-molecule fluorescence

被引:378
作者
Schuler, B
Lipman, EA
Steinbach, PJ
Kumke, M
Eaton, WA
机构
[1] NIDDKD, Chem Phys Lab, NIH, Bethesda, MD 20892 USA
[2] NIH, Ctr Mol Modeling, Ctr Informat Technol, Bethesda, MD 20892 USA
[3] Univ Potsdam, Inst Chem, D-14476 Potsdam, Germany
关键词
Forster resonance energy transfer; molecular dynamics; polypeptide; FRET;
D O I
10.1073/pnas.0408164102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To determine whether Forster resonance energy transfer (FRET) measurements can provide quantitative distance information in single-molecule fluorescence experiments on polypeptides, we measured FRET efficiency distributions for donor and acceptor dyes attached to the ends of freely diffusing polyproline molecules of various lengths. The observed mean FRET efficiencies agree with those determined from ensemble lifetime measurements but differ considerably from the values expected from Forster theory, with polyproline treated as a rigid rod. At donor-acceptor distances much less than the Forster radius R-o, the observed efficiencies are lower than predicted, whereas at distances comparable to and greater than R-0, they are much higher. Two possible contributions to the former are incomplete orientational averaging during the donor lifetime and, because of the large size of the dyes, breakdown of the point-dipole approximation assumed in Forster theory. End-to-end distance distributions and correlation times obtained from Langevin molecular dynamics simulations suggest that the differences for the longer polyproline peptides can be explained by chain bending, which considerably shortens the donor-acceptor distances.
引用
收藏
页码:2754 / 2759
页数:6
相关论文
共 49 条
[1]   Elucidation of the nature of the conformational changes of the EF-interhelical loop in bacteriorhodopsin and of the helix VIII on the cytoplasmic surface of bovine rhodopsin:: A time-resolved fluorescence depolarization study [J].
Alexiev, U ;
Rimke, I ;
Pöhlmann, T .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 328 (03) :705-719
[2]  
[Anonymous], 1980, BIOPHYS CHEM
[3]   FRET or no FRET: A quantitative comparison [J].
Berney, C ;
Danuser, G .
BIOPHYSICAL JOURNAL, 2003, 84 (06) :3992-4010
[4]   Stepwise rotation of the γ-subunit of EF0F1-ATP synthase observed by intramolecular single-molecule fluorescence resonance energy transfer [J].
Börsch, M ;
Diez, M ;
Zimmermann, B ;
Reuter, R ;
Gräber, P .
FEBS LETTERS, 2002, 527 (1-3) :147-152
[5]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[6]   OBSERVING THE HELICAL GEOMETRY OF DOUBLE-STRANDED DNA IN SOLUTION BY FLUORESCENCE RESONANCE ENERGY-TRANSFER [J].
CLEGG, RM ;
MURCHIE, AIH ;
ZECHEL, A ;
LILLEY, DMJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (07) :2994-2998
[7]   STRUCTURE OF POLY-L-PROLINE [J].
COWAN, PM ;
MCGAVIN, S .
NATURE, 1955, 176 (4480) :501-503
[8]   ORIENTATIONAL FREEDOM OF MOLECULAR PROBES - ORIENTATION FACTOR IN INTRA-MOLECULAR ENERGY-TRANSFER [J].
DALE, RE ;
EISINGER, J ;
BLUMBERG, WE .
BIOPHYSICAL JOURNAL, 1979, 26 (02) :161-193
[9]   Single-molecule protein folding: Diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2 [J].
Deniz, AA ;
Laurence, TA ;
Beligere, GS ;
Dahan, M ;
Martin, AB ;
Chemla, DS ;
Dawson, PE ;
Schultz, PG ;
Weiss, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (10) :5179-5184
[10]   Single-pair fluorescence resonance energy transfer on freely diffusing molecules: Observation of Forster distance dependence and subpopulations [J].
Deniz, AA ;
Dahan, M ;
Grunwell, JR ;
Ha, TJ ;
Faulhaber, AE ;
Chemla, DS ;
Weiss, S ;
Schultz, PG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) :3670-3675