Numerical stability of finite difference time domain methods

被引:38
作者
Thoma, P
Weiland, T
机构
[1] Comp Simulat Technol GmbH, D-64289 Darmstadt, Germany
[2] Tech Univ Darmstadt, TEMF, D-64289 Darmstadt, Germany
关键词
FDTD; time domain; numerical stability; subgridding; mesh refinement; numerical methods;
D O I
10.1109/20.717636
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, several modifications of Yee's well known FDTD method to locally refined grids or non-orthogonal coordinates have been presented. These methods sometimes show an unexpected unstable behavior. In this paper we will classify such instabilities in order to derive rules how to avoid them. As an example, we present a long term numerically stable subgridding scheme which will be examined by regarding a microstrip phase shifter.
引用
收藏
页码:2740 / 2743
页数:4
相关论文
共 14 条
[1]  
*CAD BENCHM, 1994, MICR ENG EUR NOV, P11
[2]  
*CAD REV, 1995, MICR ENG EUR MAY, P22
[4]   A LOCAL MESH REFINEMENT ALGORITHM FOR THE TIME DOMAIN FINITE-DIFFERENCE METHOD USING MAXWELL CURL EQUATIONS [J].
KIM, IS ;
HOEFER, WJR .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1990, 38 (06) :812-815
[5]  
Kunz KS., 1993, Finite Difference Time Domain Method for Electromagnetics
[6]  
SCHUHMANN R, UNPUB IEEE T MAGNETI
[7]  
Taflove A., 1995, COMPUTATIONAL ELECTR
[8]  
Thoma P, 1996, INT J NUMER MODEL EL, V9, P359, DOI 10.1002/(SICI)1099-1204(199609)9:5<359::AID-JNM245>3.0.CO
[9]  
2-A
[10]  
WEILAND T, 1977, AEU-INT J ELECTRON C, V31, P116