Nanoparticle spectroscopy: Plasmon coupling in finite-sized two-dimensional arrays of cylindrical silver nanoparticles

被引:49
作者
Sung, Jiha [1 ]
Hicks, Erin M. [1 ]
Van Duyne, Richard P. [1 ]
Spears, Kenneth G. [1 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
关键词
D O I
10.1021/jp077332b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study provides new data for interpreting plasmon coupling in finite two-dimensional arrays, which are important in plasmonic devices and sensing applications. Finite square arrays of cylindrical silver nanoparticles with two different nanoparticle diameters (339 and 163 nm) and two different interparticle spacings (400 and 450 nm) were fabricated by e-beam lithography. The plasmonic properties of these arrays were obtained by UV-visible-near-IR extinction spectroscopy and compared with isolated particle spectra. In the case of the large-diameter particle arrays, the semi-infinite array resonance is quite blue-shifted from the isolated particle resonance; the resonant wavelength of the 2 x 2 particles and successively larger blocks keeps blue-shifting relative to the isolated particle resonance and converges to that of a semi-infinite array. For the small-diameter particle arrays, the semi-infinite resonance is red-shifted from the isolated particle resonance; the resonant wavelength of the 2 x 2 particles and successively larger blocks keeps red-shifting and converge's to the semi-infinite array. The experimental resonances for progressively increasing array sizes show systematic resonance shifts consistent With increasing numbers of particles, and the bandwidth trends require models and more experiments to obtain better insight into trends.
引用
收藏
页码:4091 / 4096
页数:6
相关论文
共 47 条
[1]   Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime [J].
Atay, T ;
Song, JH ;
Nurmikko, AV .
NANO LETTERS, 2004, 4 (09) :1627-1631
[2]  
Bohren C.F., 2004, ABSORPTION SCATTERIN
[3]   Electromagnetic interactions in plasmonic nanoparticle arrays [J].
Bouhelier, A ;
Bachelot, R ;
Im, JS ;
Wiederrecht, GP ;
Lerondel, G ;
Kostcheev, S ;
Royer, P .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (08) :3195-3198
[4]   Surface plasmon resonance imaging measurements of ultrathin organic films [J].
Brockman, JM ;
Nelson, BP ;
Corn, RM .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2000, 51 :41-63
[5]   Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit [J].
Brongersma, ML ;
Hartman, JW ;
Atwater, HA .
PHYSICAL REVIEW B, 2000, 62 (24) :16356-16359
[6]   Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography [J].
Chan, George H. ;
Zhao, Jing ;
Hicks, Erin M. ;
Schatz, George C. ;
Van Duyne, Richard P. .
NANO LETTERS, 2007, 7 (07) :1947-1952
[7]  
Dirix Y, 1999, ADV MATER, V11, P223, DOI 10.1002/(SICI)1521-4095(199903)11:3<223::AID-ADMA223>3.0.CO
[8]  
2-J
[9]   Extraordinary optical transmission through sub-wavelength hole arrays [J].
Ebbesen, TW ;
Lezec, HJ ;
Ghaemi, HF ;
Thio, T ;
Wolff, PA .
NATURE, 1998, 391 (6668) :667-669
[10]   Imaging scanning tunneling microscope-induced electroluminescence in plasmonic corrals [J].
Egusa, S ;
Liau, YH ;
Scherer, NF .
APPLIED PHYSICS LETTERS, 2004, 84 (08) :1257-1259