Non-Abelian Stokes theorems in the Yang-Mills and gravity theories

被引:11
作者
Diakonov, DI
Petrov, VY
机构
[1] NORDITA, DK-2100 Copenhagen O, Denmark
[2] St Petersburg Nucl Phys Inst, Gatchina 188350, Leningrad Reg, Russia
基金
俄罗斯基础研究基金会;
关键词
Spectroscopy; State Physics; Field Theory; Elementary Particle; Quantum Field Theory;
D O I
10.1134/1.1385630
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss the interpretation of the non-Abelian Stokes theorem for the Wilson loop in the Yang-Mills theory. For the "gravitational Wilson loops," i.e., holonomies in curved d = 2, 3, 4 spaces, we then derive "non-Abelian Stokes theorems" that are similar to our formula in the Yang-Mills theory. In particular, we derive an elegant formula for the holonomy in the case of a constant-curvature background in three dimensions and a formula for small-area loops in any number of dimensions. (C) 2001 MAIK "Nauka/ Interperiodica".
引用
收藏
页码:905 / 920
页数:16
相关论文
共 26 条
[1]  
ALEKSANDROV VY, 1989, SOV J REMOT SENS+, V5, P391
[2]   DUAL OF 3-DIMENSIONAL PURE SU(2) LATTICE GAUGE-THEORY AND THE PONZANO-REGGE MODEL [J].
ANISHETTY, R ;
CHELUVARAJA, S ;
SHARATCHANDRA, HS ;
MATHUR, M .
PHYSICS LETTERS B, 1993, 314 (3-4) :387-390
[3]   Dual gluons and monopoles in 2+1 dimensional Yang-Mills theory [J].
Anishetty, R ;
Majumdar, P ;
Sharatchandra, HS .
PHYSICS LETTERS B, 2000, 478 (1-3) :373-378
[4]   NON-ABELIAN STOKES-FORMULA [J].
AREFEVA, IY .
THEORETICAL AND MATHEMATICAL PHYSICS, 1980, 43 (01) :353-356
[5]   EXACT COMPUTATION OF LOOP AVERAGES IN 2-DIMENSIONAL YANG-MILLS THEORY [J].
BRALIC, NE .
PHYSICAL REVIEW D, 1980, 22 (12) :3090-3103
[6]  
BRODA B, MATHPH0012035
[7]   Gauge-invariant formulation of the d=3 Yang-Mills theory [J].
Diakonov, D ;
Petrov, V .
PHYSICS LETTERS B, 2000, 493 (1-2) :169-174
[8]  
DIAKONOV D, 1996, NONPERTURBATIVE APPR, P36
[9]  
DIAKONOV D, 1989, JETP LETT, V49, P323
[10]  
DIAKONOV D, HEPTH9912268